在学校里,我想每个人都应该有过相关的知识点!知识点有时是专门用于课本或测验的内容。以下是知猫范文网小编为大家收集整理的高二知识点物理,多篇合集,欢迎复制下载!

高二知识点物理(必备10篇)

高二知识点物理 第1篇

高二物理原子和原子核知识点总结

一、原子结构知识点:

1、电子的发现和汤姆生的原子模型:

(1)电子的发现:

1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、α粒子散射实验和原子核结构模型

(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置:

② 现象:

绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

有少数α粒子发生较大角度的偏转

有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:

由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

3、玻尔的原子模型

(1)原子核式结构模型与经典电磁理论的矛盾(两方面)

电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论

上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1

③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

n为正整数,称量数数

(3)玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:

其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:, ×10-10m(以电子距原子核无穷远时电势能为零计算)

②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n=1的定态称为基态。n=2以上的定态,称为激发态。

二、原子核知识点

1、天然放射现象

(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性

放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象

天然放射现象:表明原子核存在精细结构,是可以再分的

(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:

2、原子核的衰变:

(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒

γ射线是伴随α、β衰变放射出来的高频光子流

在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子

(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m

3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

4、原子核的组成和放射性同位素

(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

在原子核中:

质子数等于电荷数

核子数等于质量数

中子数等于质量数减电荷数

(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用α粒子轰击铝时,发生核反应。

发生+β衰变,放出正电子

三、核能知识点:

1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

2、质能方程:爱因斯坦提出物体的质量和能量的关系:

E=mc²——质能方程

3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

吸收或放出的能量,与质量变化的关系为:

为了计算方便以后在计算核能时我们用以下两种方法

方法一:若已知条件中以千克作单位给出,用以下公式计算

公式中单位:

方法二:若已知条件中以作单位给出,用以下公式计算

公式中单位:

4、释放核能的途径——裂变和聚变

(1)裂变反应:

①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件:

③裂变时平均每个核子放能约1Mev能量

1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

(2)聚变反应:①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。

②平均每个核子放出3Mev的能量 ③聚变反应的条件;几百万摄氏度的高温

高二知识点物理 第2篇

一、磁场:

1、磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL

2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉T,1T=1N/A。m

六、安培力:磁场对电流的作用力;

1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的.乘积。

2、定义式F=BIL(适用于匀强电场、导线很短时)

3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;

八、磁场对电流有力的作用;

九、电流和电流之间亦有力的作用;

(1)同向电流产生引力;

(2)异向电流产生斥力;

十、分子电流假说:所有磁场都是由电流产生的;

十一、磁性材料:能够被强烈磁化的物质叫磁性材料:

(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、

(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

十二、洛伦兹力:磁场对运动电荷的作用力,叫做洛伦兹力

1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。

(2)洛仑兹力只改变速度的方向而不改变其大小

(3)洛伦兹力永远不做功。

2、洛伦兹力的大小

(1)当v平行于B时:F=0

(2)当v垂直于B时:F=qvB

高二知识点物理 第3篇

动量与动能的比较:

①动量是矢量,动能是标量。

②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的'物理量。

比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。

动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。

●碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。

以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。

以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。

各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。

高二知识点物理 第4篇

一、原子结构知识点:

1、电子的发现和汤姆生的原子模型:

(1)电子的发现:

1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。

电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。

(2)汤姆生的原子模型:

1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。

2、α粒子散射实验和原子核结构模型

(1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成

①装置:

② 现象:

a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。

b. 有少数α粒子发生较大角度的偏转

c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。

(2)原子的核式结构模型:

由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。

原子核半径小于10-14m,原子轨道半径约10-10m。

3、玻尔的原子模型

(1)原子核式结构模型与经典电磁理论的矛盾(两方面)

a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。

b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。

(2)玻尔理论

上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:

①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。

②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1

③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

n为正整数,称量数数

(3)玻尔的氢子模型:

①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)

氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:

其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-13.6ev, r1=0.53×10-10m(以电子距原子核无穷远时电势能为零计算)

②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。

其中n=1的定态称为基态。n=2以上的定态,称为激发态。

二、原子核知识点

1、天然放射现象

(1)天然放射现象的发现:1896年法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。

放射性:物质能发射出上述射线的性质称放射性

放射性元素:具有放射性的元素称放射性元素

天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象

天然放射现象:表明原子核存在精细结构,是可以再分的

(2)放射线的成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:

2、原子核的衰变:

(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒

γ射线是伴随α、β衰变放射出来的高频光子流

在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子

(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。

一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m

3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。

(1)质子的发现:1919年,卢瑟福用α粒子轰击氦原子核发现了质子。

(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。

4、原子核的组成和放射性同位素

(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子

在原子核中:

质子数等于电荷数

核子数等于质量数

中子数等于质量数减电荷数

(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。

正电子的发现:用α粒子轰击铝时,发生核反应。

发生+β衰变,放出正电子

三、核能知识点:

1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。

2、质能方程:爱因斯坦提出物体的质量和能量的关系:

E=mc2——质能方程

3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。

吸收或放出的能量,与质量变化的关系为:

为了计算方便以后在计算核能时我们用以下两种方法

方法一:若已知条件中以千克作单位给出,用以下公式计算

公式中单位:

方法二:若已知条件中以作单位给出,用以下公式计算

公式中单位:

4、释放核能的途径——裂变和聚变

(1)裂变反应:

①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。

②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。

链式反应的条件:

③裂变时平均每个核子放能约1Mev能量

1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量

(2)聚变反应:

①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。

②平均每个核子放出3Mev的能量

③聚变反应的条件;几百万摄氏度的高温

高二知识点物理 第5篇

力是物体间的相互作用

1.力的国际单位是牛顿,用N表示;

2.力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;

3.力的示意图:用一个带箭头的线段表示力的方向;

4.力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;

重力:由于地球对物体的吸引而使物体受到的力;

a.重力不是万有引力而是万有引力的一个分力;

b.重力的方向总是竖直向下的(垂直于水平面向下)

c.测量重力的仪器是弹簧秤;

d.重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;

弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;

a.产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;

b.弹力包括:支持力、压力、推力、拉力等等;

c.支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;

d.在弹性限度内弹力跟形变量成正比;F=Kx

摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;

a.产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;

b.摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;

c.滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;

d.静摩擦力的大小等于使物体发生相对运动趋势的外力;

合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;

a.合力与分力的作用效果相同;

b.合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

c.合力大于或等于二分力之差,小于或等于二分力之和;

d.分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);

矢量

矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)

标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)

直线运动

物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;

(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

(2)在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;

(3)处于平衡状态的物体在任意两个相互垂直方向的合力为零;

机械运动

机械运动:一物体相对其它物体的位置变化。

1.参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);

2.质点:只考虑物体的质量、不考虑其大小、形状的物体;

(1)质点是一理想化模型;

(2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时;

如:研究地球绕太阳运动,火车从北京到上海;

3.时刻、时间间隔:在表示时间的数轴上,时刻是一点、时间间隔是一线段;

例:5点正、9点、7点30是时刻,45分钟、3小时是时间间隔;

4.位移:从起点到终点的有相线段,位移是矢量,用有相线段表示;路程:描述质点运动轨迹的曲线;

(1)位移为零、路程不一定为零;路程为零,位移一定为零;

(2)只有当质点作单向直线运动时,质点的位移才等于路程;

(3)位移的国际单位是米,用m表示

5.位移时间图象:建立一直角坐标系,横轴表示时间,纵轴表示位移;

(1)匀速直线运动的位移图像是一条与横轴平行的直线;

(2)匀变速直线运动的位移图像是一条倾斜直线;

(3)位移图像与横轴夹角的正切值表示速度;夹角越大,速度越大;

6.速度是表示质点运动快慢的物理量

(1)物体在某一瞬间的速度较瞬时速度;物体在某一段时间的速度叫平均速度;

(2)速率只表示速度的大小,是标量;

7.加速度:是描述物体速度变化快慢的物理量;

(1)加速度的定义式:a=vt-v0/t

(2)加速度的大小与物体速度大小无关;

(3)速度大加速度不一定大;速度为零加速度不一定为零;加速度为零速度不一定为零;

(4)速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关;

(5)加速度是矢量,加速度的方向和速度变化方向相同;

(6)加速度的国际单位是m/s2

匀变速直线运动

1.速度:匀变速直线运动中速度和时间的关系:vt=v0+at

注:一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;

(1)作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;

(2)作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均;

2.位移:匀变速直线运动位移和时间的关系:s=v0t+1/2at2

注意:当物体作加速运动时a取正值,当物体作减速运动时a取负值;

3.推论:2as=vt2-v02

4.作匀变速直线运动的物体在两个连续相等时间间隔内位移之差等于定植:s2-s1=aT2

5.初速度为零的匀加速直线运动:前1秒,前2秒,……位移和时间的关系是:位移之比等于时间的平方比;第1秒、第2秒……的位移与时间的关系是:位移之比等于奇数比;

自由落体运动

只在重力作用下从高处静止下落的物体所作的运动。

1.位移公式:h=1/2gt2

2.速度公式:vt=gt

3.推论:2gh=vt2

牛顿定律

1.牛顿第一定律(惯性定律):一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种做状态为止。

a.只有当物体所受合外力为零时,物体才能处于静止或匀速直线运动状态;

b.力是该变物体速度的原因;

c.力是改变物体运动状态的原因(物体的速度不变,其运动状态就不变)

d力是产生加速度的原因;

2.惯性:物体保持匀速直线运动或静止状态的性质叫惯性。

a.一切物体都有惯性;

b.惯性的大小由物体的质量决定;

c.惯性是描述物体运动状态改变难易的物理量;

3.牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟物体所受合外力的方向相同。

a.数学表达式:a=F合/m;

b.加速度随力的产生而产生、变化而变化、消失而消失;

c.当物体所受力的方向和运动方向一致时,物体加速;当物体所受力的方向和运动方向相反时,物体减速。

d.力的单位牛顿的定义:使质量为1kg的物体产生1m/s2加速度的力,叫1N;

4.牛顿第三定律:物体间的作用力和反作用总是等大、反向、作用在同一条直线上的;

a.作用力和反作用力同时产生、同时变化、同时消失;

b.作用力和反作用力与平衡力的根本区别是作用力和反作用力作用在两个相互作用的物体上,平衡力作用在同一物体上;

曲线运动·万有引力

曲线运动

质点的运动轨迹是曲线的运动

1.曲线运动中速度的方向在时刻改变,质点在某一点(或某一时刻)的速度方向是曲线在这一点的切线方向

2.质点作曲线运动的条件:质点所受合外力的方向与其运动方向不在同一条直线上;且轨迹向其受力方向偏折;

3.曲线运动的特点

曲线运动一定是变速运动;

曲线运动的加速度(合外力)与其速度方向不在同一条直线上;

4.力的作用

力的方向与运动方向一致时,力改变速度的大小;

力的方向与运动方向垂直时,力改变速度的方向;

力的方向与速度方向既不垂直,又不平行时,力既搞变速度大小又改变速度的方向;

运动的合成与分解

1.判断和运动的方法:物体实际所作的运动是合运动

2.合运动与分运动的等时性:合运动与各分运动所用时间始终相等;

3.合位移和分位移,合速度和分速度,和加速度与分加速度均遵守平行四边形定则;

平抛运动

被水平抛出的物体在在重力作用下所作的运动叫平抛运动。

1.平抛运动的实质:物体在水平方向上作匀速直线运动,在竖直方向上作自由落体运动的合运动;

2.水平方向上的匀速直线运动和竖直方向上的自由落体运动具有等时性;

3.求解方法:分别研究水平方向和竖直方向上的二分运动,在用平行四边形定则求和运动;

匀速圆周运动

质点沿圆周运动,如果在任何相等的时间里通过的圆弧相等,这种运动就叫做匀速圆周运动。

1.线速度的大小等于弧长除以时间:v=s/t,线速度方向就是该点的切线方向;

2.角速度的大小等于质点转过的角度除以所用时间:ω=Φ/t

3.角速度、线速度、周期、频率间的关系:

(1)v=2πr/T;

(2)ω=2π/T;

(3)V=ωr;

(4)f=1/T;

4.向心力:

(1)定义:做匀速圆周运动的物体受到的沿半径指向圆心的力,这个力叫向心力。

(2)方向:总是指向圆心,与速度方向垂直。

(3)特点:①只改变速度方向,不改变速度大小

②是根据作用效果命名的。

(4)计算公式:F向=mv2/r=mω2r

5.向心加速度:a向=v2/r=ω2r

开普勒三定律

1.开普勒第一定律:所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上;

说明:在中学间段,若无特殊说明,一般都把行星的运动轨迹认为是圆;

2.开普勒第三定律:所有行星与太阳的连线在相同的时间内扫过的面积相等;

3.开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等;

公式:R3/T2=K;

说明:

(1)R表示轨道的半长轴,T表示公转周期,K是常数,其大小之与太阳有关;

(2)当把行星的轨迹视为圆时,R表示愿的半径;

(3)该公式亦适用与其它天体,如绕地球运动的卫星;

万有引力定律

自然界中任何两个物体都是互相吸引的,引力的大小跟这两个物体的质量成正比,跟它们的距离的二次方成反比。

1.计算公式

F:两个物体之间的引力

G:万有引力常量

M1:物体1的质量

M2:物体2的质量

R:两个物体之间的距离

依照国际单位制,F的单位为牛顿(N),m1和m2的单位为千克(kg),r的单位为米(m),常数G近似地等于

6.67×10^-11N·m^2/kg^2(牛顿平方米每二次方千克)。

2.解决天体运动问题的思路:

(1)应用万有引力等于向心力;应用匀速圆周运动的线速度、周期公式;

(2)应用在地球表面的物体万有引力等于重力;

(3)如果要求密度,则用:m=ρV,V=4πR3/3

机械能

功等于力和物体沿力的方向的位移的乘积;

1.计算公式:w=Fs;

2.推论:w=Fscosθ,θ为力和位移间的夹角;

3.功是标量,但有正、负之分,力和位移间的夹角为锐角时,力作正功,力与位移间的夹角是钝角时,力作负功;

功率

功率是表示物体做功快慢的物理量。

1.求平均功率:P=W/t;

2.求瞬时功率:p=Fv,当v是平均速度时,可求平均功率;

3.功、功率是标量;

功和能之间的关系

功是能的转换量度;做功的过程就是能量转换的过程,做了多少功,就有多少能发生了转化;

动能定理

合外力做的功等于物体动能的变化。

1.数学表达式:w合=mvt2/2-mv02/2

2.适用范围:既可求恒力的功亦可求变力的功;

3.应用动能定理解题的优点:只考虑物体的初、末态,不管其中间的运动过程;

4.应用动能定理解题的步骤:

(1)对物体进行正确的受力分析,求出合外力及其做的功;

(2)确定物体的初态和末态,表示出初、末态的动能;

(3)应用动能定理建立方程、求解

重力势能

物体的重力势能等于物体的重量和它的速度的乘积。

1.重力势能用EP来表示;

2.重力势能的数学表达式:EP=mgh;

3.重力势能是标量,其国际单位是焦耳;

4.重力势能具有相对性:其大小和所选参考系有关;

5.重力做功与重力势能间的关系

(1)物体被举高,重力做负功,重力势能增加;

(2)物体下落,重力做正功,重力势能减小;

(3)重力做的功只与物体初、末为置的高度有关,与物体运动的路径无关

机械能守恒定律

在只有重力(或弹簧弹力做功)的情形下,物体的动能和势能(重力势能、弹簧的弹性势能)发生相互转化,但机械能的总量保持不变。

1.机械能守恒定律的适用条件:只有重力或弹簧弹力做功。

2.机械能守恒定律的数学表达式:

3.在只有重力或弹簧弹力做功时,物体的机械能处处相等;

4.应用机械能守恒定律的解题思路

(1)确定研究对象,和研究过程;

(2)分析研究对象在研究过程中的受力,判断是否遵受机械能守恒定律;

(3)恰当选择参考平面,表示出初、末状态的机械能;

(4)应用机械能守恒定律,立方程、求解;

高二知识点物理 第6篇

一、磁场:

1、磁场的基本性质:磁场对方入其中的磁极、电流有磁场力的作用;

2、磁铁、电流都能能产生磁场;

3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用;

4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;

二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向;

1、磁感线是人们为了描述磁场而人为假设的线;

2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;

3、磁感线是封闭曲线;

三、安培定则:

1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向;

2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向;

3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;

四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);

五、磁感应强度:磁感应强度是描述磁场强弱的物理量。

1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL

2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向)

3、磁感应强度的国际单位:特斯拉T,1T=1N/A。m

六、安培力:磁场对电流的作用力;

1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。

2、定义式F=BIL(适用于匀强电场、导线很短时)

3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。

七、磁铁和电流都可产生磁场;

八、磁场对电流有力的作用;

九、电流和电流之间亦有力的作用;

(1)同向电流产生引力;

(2)异向电流产生斥力;

十、分子电流假说:所有磁场都是由电流产生的;

十一、磁性材料:能够被强烈磁化的物质叫磁性材料:

(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、

(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;

十二、洛伦兹力:磁场对运动电荷的作用力,叫做洛伦兹力

1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向;

(1)洛仑兹力F一定和B、V决定的平面垂直。

(2)洛仑兹力只改变速度的方向而不改变其大小

(3)洛伦兹力永远不做功。

2、洛伦兹力的大小

(1)当v平行于B时:F=0

(2)当v垂直于B时:F=qvB

高二知识点物理 第7篇

一、电磁波的发现

1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)◎理解:

(1)均匀变化的磁场产生稳定电场

(2)非均匀变化的磁场产生变化电场

2、电磁场理论的核心之二:变化的电场产生磁场麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场◎理解:

(1)均匀变化的电场产生稳定磁场

(2)非均匀变化的电场产生变化磁场

3、麦克斯韦电磁场理论的理解:

恒定的电场不产生磁场

均匀变化的电场在周围空间产生恒定的磁场

振荡磁场产生同频率的振荡电场

4、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场。

5、电磁波:电磁场由发生区域向远处的传播就是电磁波。

6、电磁波的特点:

(1)电磁波是横波,电场强度E和磁感应强度B按正弦规律变化,二者相互垂直,均与波的传播方向垂直。

(2)电磁波可以在真空中传播,速度和光速相同、v=λf

(3)电磁波具有波的特性

7、赫兹的电火花:赫兹观察到了电磁波的反射,折射,干涉,偏振和衍射等现象、,他还测量出电磁波和光有相同的速度、这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历首先捕捉到了电磁波。

高二知识点物理 第8篇

(1)对同一导体,导体中的电流跟它两端的电压成正比。

(2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R)

(3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。

(4)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。

(5)线性元件和非线性元件

线性元件:伏安特性曲线是通过原点的直线的电学元件。

非线性元件:伏安特性曲线是曲线,即电流与电压不成正比的电学元件

高二知识点物理 第9篇

1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R

8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+

电压关系U总=U1+U2+U3+U总=U1=U2=U3

功率分配P总=P1+P2+P3+P总=P1+P2+P3+

高二知识点物理 第10篇

1、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9。0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

2、两种电荷、电荷守恒定律、元电荷:(e=1。60×10—19C);带电体电荷量等于元电荷的整数倍

3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4、真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

5、电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

6、匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

7、电势与电势差:UAB=φA—φB,UAB=WAB/q=—ΔEAB/q

8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9、电场力做功与电势能变化ΔEAB=—WAB=—qUAB(电势能的增量等于电场力做功的负值)

10、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

11、电势能的变化ΔEAB=EB—EA{带电体在电场中从A位置到B位置时电势能的差值}

12、电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m