高性能超薄二氧化碳分离膜制备成功

近日,从中国科学院大连化学物理研究院传出消息,该所无机膜与催化新材料研究组的杨维慎研究员和彭媛副研究员团队在纯相共价有机框架(COFs)气体分离膜研究方面取得新进展,制备出高性能超薄二氧化碳分离膜,分离性能达到了工业应用需求。

据介绍,他们制备的二氧化碳分离膜以COFs纳米片为膜构筑基元,诱发错排缩孔效应,实现了二氧化碳/氢气混合气中二氧化碳的优先渗透分离。也就是说,二维COFs骨架对二氧化碳选择性吸附特性与纳米片错排缩孔效应协同作用,可以诱发气体在膜内表面扩散机制,进而实现二氧化碳的高效分离。实验研究数据显示,应用COFs材料时,在298 K下,二氧化碳/氢气分离系数大于20,二氧化碳渗透率大于300 GPUs,分离性能达到了工业应用需求。

由于二维COFs孔径大于0.8 nm,对于动力学直径为0.3 nm~0.4 nm的小分子气体例如氢气(0.29 nm)、二氧化碳(0.33 nm)等难以实现精确分离,构建具有高效二氧化碳分离性能的纯相二维COFs膜面临极大挑战。“但COFs材料具有永久性一维直通孔道,丰富的表面官能团以及优异稳定性,在二氧化碳分离领域仍然具有巨大的应用潜力。

基于此,该团队在前期研究基础上,以3种不同表面化学和孔径的层状COFs材料为研究对象,发展出一种弱酸性溶剂剥层,并辅以温和机械外力的方法,将其剥离为厚度2 nm、尺寸达微米级的系列超薄纳米片层,通过精确控制纳米片错排组装,构建了孔径尺寸适合二氧化碳分离的纯相COFs膜。

“动态三原子”加氢催化剂问世

近日,中国科学技术大学路军岭教授与李微雪教授、韦世强教授等课题组合作,利用金属载体相互作用和原子限域,首次设计出一种高密度、抗积碳镍铜“动态三原子”新型非贵金属催化剂,并在富烯烃气氛中乙炔和1,3-丁二烯选择性加氢等应用方面取得突破性进展。

低碳烯烃是石油化工中的核心平台小分子。石脑油裂解制备的低碳烯烃,通常含有微量乙炔和1,3-丁二烯分子,严重影响其下游应用。选择性加氢是去除烯烃中微量乙炔(或1,3-丁二烯)的一项关键纯化技术,其工业催化剂通常是钯基贵金属催化剂。开发出高效非贵金属催化剂,同时避免催化剂烧结和积碳,是一项重要科学难题。

路军岭团队通过协同金属—载体相互作用和原子限域,在石墨型氮化碳载体上制备出一种高密度镍铜三原子催化剂。在富乙烯氛围的乙炔(或1,3-丁二烯)选择性加氢反应中,该催化剂在活性、选择性、稳定性方面表现出优异的催化性能,优于镍单原子催化剂。测试表明,该催化剂在反应过程中基本没有积碳的生成。

多种表征和理论计算表明,活性金属镍原子通过羟基被限域在两个铜原子位点中间,形成一种线式结构,镍原子位点在加氢反应中可以发生动态结构变化。这种动态结构变化,不仅可以改进催化剂对反应分子的吸附从而提高催化活性,而且可以维持高稳定性,而单镍位点则使得该催化剂表现出高选择性和高抗积碳性能。