王利红

关键词: MIMO; 双频; 高隔离度; 毫米波; 高增益; 极化分集

中图分类号: TN823?34                        文献标识码: A                           文章编号: 1004?373X(2019)05?0036?04

A dual?band MIMO antenna with high isolation

WANG Lihong

(School of Physics and Electronics Science, Shanxi Datong University, Datong 037009, China)

Abstract: A dual?band MIMO antenna with high isolation is designed. The compact double?port polarization diversity antenna and four?port MIMO antenna are obtained by perpendicularly and orthogonally placing two broadband millimeter wave antennas onto the FR?4 dielectric substrate. The mutually orthogonal polarization mode is used to improve the isolation of adjacent ports. The semicircular annular and U?shaped slots are etched on the radiation patches of the two antenna elements respectively to meet the dual?band characteristic, and a rectangular slot is slotted on the ground. The HFSS simulation analysis results show that the designed antenna can operate at 28 GHz (24.5~29 GHz) and 39 GHz (36~47 GHz), has perfect radiation characteristic within working bands, and the isolation between adjacent ports can reach up to 30 dB. Four metal strips are loaded on the antenna as the director to improve the gain of the antenna.

Keywords: MIMO; dual?band; high isolation; millimeter wave; high gain; polarization diversity

0  引  言

5G无线通信系统得到了全球企业、研究院所和高校的广泛关注[1]。与4G相比,其主要特点之一就是转向了容易获得且带宽更宽的高频段[2?3],FCC公布将24 GHz以上频段用于5G移动宽带运营,分别为 [4]28 GHz,37 GHz,39 GHz和64~71 GHz。

MIMO技术在无线通信系统中得到了广泛的应用,因此设计一种工作于高频段的毫米波MIMO天线也成了一个重要的研究方向[5?10]。为了提高天线端口间的隔离度,文献[6?7]在天线地面开了长方形槽,结构简单但隔离度只达到20.6 dB和17 dB。文献[8]采用EBG结构去耦的方式,使天线的隔离度达到30 dB,但天线结构较复杂,且为窄频带。

本文设计了两款辐射贴片上刻蚀一定结构缝隙的双频毫米波宽带天线,并组合使其极化方式正交,得到了高隔离度且结构紧凑的双端口极化分集天线和四端口MIMO天线。所设计的天线可工作在28 GHz和39 GHz,在工作频段内具有较好的辐射特性,天线端口间的隔离度达到了30 dB以上。同时,在天线上方加载了4根金属条作为引向器,使得天线增益提高了2 dBi。

1  双端口极化分集天线设计

1.1  天线结构

双端口极化分集天线的结构如图1所示。其中Ant_1和Ant_2的辐射贴片上分别刻蚀了半圆环形和U形缝隙,地面开了长方形槽,改善了工作频段内的阻抗匹配,得到了双频谐振。两天线单元垂直正交地印制在介电常数为4.4,厚度为0.6 mm的FR?4介质基板上。

1.2  天线的电流分布

图2是天线在28 GHz和39 GHz时的电流密度分布图。可见在两个频率点处,端口1单独馈电时Ant_2上的电流分布都很稀疏,两端口间的电磁耦合很微弱,隔离度较高;端口2单独馈电时对Ant_1的影响也很微弱,隔离效果较好。

1.3  天线的[S]参数

两天线单元垂直正交放置可以提高隔离度,但天线单元的间距很近会产生较强的耦合,所以需要在确保天线性能的基础上来确定天线单元间的距离[d]。图3给出了不同[d]值时天线的[S]参数。

从图3a),图3b)可以看出,在[d]大于2.4 mm时,[S22]曲线几乎没有变化,而在高频段的[S11]值有较大变化,这是因为在高频段,如图2d)所示,Ant_2单独馈电时Ant_1的地边缘存在着较大的电流分布。图3c)显示,随着[d]的增大天线两端口间的隔离度逐渐增加,综合考虑到天线的隔离度和尺寸,选择[d]为3.8 mm。

图4显示了优化后天线的[S]参数。所得Ant_1的工作频段为24.5~29 GHz和35~47 GHz,Ant_2的工作频段为22~32.5 GHz和36~52 GHz,谐振点为28 GHz和39 GHz。因此所设计的双端口极化分集天线可工作在24.5~29 GHz和36~47 GHz。由[S12]曲线可知,天线隔离度达到了30 dB以上,高频段甚至可达40 dB。

1.4  天线的辐射方向图

图5给出了两天线的辐射方向图。由图5可见,端口1单独馈电时Ant_1的[yOz]面和端口2单独馈电时Ant_2的[xOz]面方向图基本一致,呈全向型,而端口1单独馈电时Ant_1的[xOz]面和端口2单独馈电时Ant_2的[yOz]面方向图相似,为“8”字形,两天线的极化方式实现了垂直正交。

2  四端口MIMO天线设计

图6是四端口MIMO天线的示意图。该天线由2个Ant_1和2个Ant_2组成,其中每两个相邻天线单元都垂直正交地印制在尺寸为12 mm×12 mm的FR?4介质基板上。

设计天线的增益较低,所以在天线上方加载了4根金属条作为引向器以提高增益,如图6b)所示,其中金属条刻蚀在介电常数为4.4,厚度为0.6 mm的介质基板上,与天线的垂直距离为4.4 mm。仿真优化所得尺寸为:[l7=]2 mm,[l8=]3 mm,[a3=]0.25 mm,[a4=]0.15 mm,[d1=]4.5 mm,[d2=]5.2 mm。

图7是四端口MIMO天线的[S]参数图。由图7a)可见,Ant_1和Ant_3 的[S]曲线基本一致,工作频段为24.5~28.8 GHz和35~46 GHz,Ant_2和Ant_4的[S]曲线基本相同,工作频段为22~33 GHz和36~52 GHz。因此,四端口MIMO天线可工作在24.5~28.8 GHz和36~46 GHz。由图7b)可知,天线隔离度在整个工作频段内达到了30 dB以上。天线增益如图8所示,可见加上引向器后天线增益最高可增加2 dBi。

3  结  语

在毫米波超宽带天线的基础上,设计了两款双频宽带天线,同时合理组合两款天线使其极化方式正交,得到了高隔离度且结构紧凑的双端口极化分集天线和四端口MIMO天线。所设计的天线可工作在28 GHz(24.5~29 GHz)和39 GHz(36~47 GHz),在工作频段内具有较好的辐射特性,天线端口间的隔离度达到了30 dB以上。同时,在天线上方加载金属条作为引向器,使得天线增益最高增加了2 dBi。

参考文献

[1] 张平,陶运铮,张治.5G若干关键技术评述[J].通信学报,2016,37(7):15?29.

ZHANG P, TAO Y Z, ZHANG Z. Survey of several key technologies for 5G [J]. Journal on communications, 2016, 37(7): 15?29.

[2] 方箭,李景春,黄标,等.5G频谱研究现状及展望[J].电信科学,2015,31(12):111?118.

FANG J, LI J C, HUANG B, et al. Review and prospect on the research of 5G spectrum [J]. Telecommunications science, 2015, 31(12): 111?118.

[3] OJAROUDIPARCHIN N, SHEN M, PEDERSEN F. A 28 GHz FR?4 compatible phased array antenna for 5G mobile phone applications [C]// 2015 International Symposium on Antennas and Propagation. Hobart: IEEE, 2015: 1?4.

[4] SHORBAGY M E, SHUBAIR R M, ALHAJRI M I, et al. On the design of millimeter?wave antennas for 5G [C]// 2016 IEEE Mediterranean Microwave Symposium. Abu Dhabi: IEEE, 2016: 1?4.

[5] ZULKIFLI F Y, RAHARDJO E T. Compact MIMO microstrip antenna with defected ground for mutual coupling suppression [C]// 2011 Piers Marrakesh Progress in Electromagnetics Research Symposium. [S.l.]: IEEE, 2011: 89?92.

[6] SHARAWI M S, NUMAN A B, KHAN M U, et al. A dual?element dual?band MIMO antenna system with enhanced isolation for mobile terminals [J]. IEEE antennas and wireless propagation letters, 2012, 12(11): 1006?1009.

[7] ALHASAN M, DENIDNI T, SEBAK A. Millimeter?wave compact EBG structure for mutual coupling reduction applications [J]. IEEE transactions on antenna and propagation, 2015, 63(2): 823?828.

[8] DONG Y D, ITOH T. Planar ultra?wideband antennas in Ku and K?band for pattern or polarization diversity applications [J]. IEEE transactions on antennas and propagation, 2012, 60(6): 2886?2895.

[9] FEMINA B S, MISHRA S K. Compact WLAN band?notched printed ultrawide and MIMO antenna with polarization diversity [J]. Progress in electromagnetics research C, 2016, 61: 149?159.

[10] WANG L H, XU L N, CHEN X W, et al. A compact UWB diversity antenna with high isolation [J]. IEEE antennas and wireless propagation letters, 2014, 13(1): 35?38.

[11] REZAEIEH S A, ANTONIADES M A, ABBOSH A M. Gain enhancement of wideband metamaterial?loaded loop antenna with tightly coupled arc?shaped directors [J]. IEEE transactions on antennas and propagation, 2017, 65(4): 2090?2095.