臧丽娟

摘 要 微卫星不稳定性(microsatellite instability, MSI)是指由于复制错误造成的微卫星重复的数目改变,其发生机制为错配修复缺陷。结直肠癌患者中有15% ~ 20%为MSI高的患者。根据美国国家综合癌症网络发布的最新相关指南,建议对所有结直肠癌患者均使用聚合酶链反应法或免疫组织化学法进行MSI/错配修复检测。错配修复蛋白是诊断Lynch综合征的关键分子标志物。MSI高的结直肠癌患者的预后相对较好,但MSI高的Ⅱ期患者无法自氟尿嘧啶辅助化疗中获益。目前已见有抗程序性死亡受体-1单克隆抗体治疗MSI高的转移性结直肠癌患者疗效较好的报告,但此结论仍需得到大型临床试验的确认。

关键词 微卫星不稳定性 错配修复 Lynch综合征

中图分类号:R735.3 文献标识码:A 文章编号:1006-1533(2018)01-0008-06

Research progress of microsatellite instability in colorectal cancer

ZANG Lijuan*

(Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China)

ABSTRACT Microsatellite instability (MSI) is the change of the number of microsatellites, which is caused by replication error, and its mechanism is deficiency of mismatch repair (MMR). About 15% ~ 20% of patients with colorectal cancer(CRC) are MSI high (MSI-H) patients. According to the latest National Comprehensive Cancer Network guidelines, it is highly recommended that all patients with CRC should detect MSI/MMR via polymerase chain reaction or immunohistochemistry. MMR proteins are key markers for diagnosis of Lynch syndrome. Patients with MSI-H have a better prognosis, but those with stage II MSI-H tumors are not able to benefit from fluorouracil-based therapy. At present, anti-programmed cell death protein-1 monoclonal antibodies have been applied to metastatic MSI-H colorectal cancer patients, which has achieved better efficacy, but large trials are still needed to verify these effects.

KEY WORDS microsatellite instability; mismatch repair; Lynch syndrome

结直肠癌是全球第三常见的癌症类型,造成全球每年约70万人死亡;而在中国,每年新发的结直肠癌病例数超过25万人,同时有约14万人死于结直肠癌[1]。近年来,结直肠癌的发病率持续上升,但死亡率逐年下降,主要得益于早期癌症检测及其管理水平和人们对癌症认识能力的持续提高等。

微卫星(microsatellite)又被称为短串联重复(short tandem repeat),是一种短而重复且长度<10个核苷酸的DNA序列,一般由1 ~ 6个核苷酸串联并重复排列组成(多数为双碱基CA/GA或单碱基A/T)。染色体等位基因通常含有不同长度的同一微卫星,这些微卫星占基因组的3%。微卫星不稳定性(microsatellite instability, MSI)是指由于复制错误造成的微卫星重复的数目改变,导致其发生的机制为错配修复缺陷。错配修复蛋白包括MLH1、PMS2、MSH2、MSH6、MLH3、MSH3和PMS1等,这些蛋白可构成识别和修复DNA损伤的异质二聚体,经与核酸外切酶、增殖细胞核抗原和DNA聚合酶的共同作用修复MSI,其中与结直肠癌相关的错配修复蛋白异质二聚体是MLH1/PMS2和MSH2/MSH6。很多生长调控相关因子的基因中含有大量微卫星,错配修复缺陷造成的MSI会引起DNA复制过程中发生突变,最后形成肿瘤。本文就MSI用于结直肠癌诊断、预后和治疗方面的研究进展作一简要介绍[2]。

1 MSI检测

根据美国国家综合癌症网络2017年更新的相关指南[3],建议对所有结直肠癌患者均进行MSI和错配修复状态的筛查。此外,美国临床病理学学会、美国病理学家学会、美国分子病理学协会和美国临床肿瘤学学会共同发布的结直肠癌分子标志物相关指南[4]也指出,应检测结直肠癌患者的错配修复状态,以评价Lynch综合征风险和预后分层。

1.1 DNA检测步骤

MSI的DNA检测基于聚合酶链反应(polymerase chain reaction, PCR)法,系通过在肿瘤组织样本中扩增DNA的几个微卫星位点,然后与对应的正常DNA进行比较。美国国家癌症研究所推荐对5个微卫星标志物进行检测以确定MSI状态,其中包括两个单核苷酸重复位点BAT-25和BAT-26以及3个多核苷酸重复位点D2S123、D5S346和D17S250[5-6]。除此之外,也有文献推荐了其他检测位点,比如Promega标准中包括5个单核苷酸重复位点BAT-25、BAT-26、MONO-27、NR-21和NR-24以及两个多核苷酸重复位点PENTA-C和PENTA-D[7]。对这些标志物的检测结果均与测序结果高度一致[6]。不同相关指南给出的DNA检测步骤有所不同,其中英国国家健康与临床优化研究所推荐的检测步骤如下[8]:

1)使用PCR法检测MSI。

2)如果检测结果为阳性(MSI高/低),继续进行BRAF V600E突变和MLH1启动子CpG岛超甲基化检测,以区分散发性结直肠癌和Lynch综合征相关的结直肠癌。

3)先进行BRAF V600E突变检测。如检测结果为阳性,诊断为散发性结直肠癌。

4)如BRAF V600E突变检测结果为阴性,再进行MLH1启动子CpG岛超甲基化检测。如果检测结果为阳性,诊断为散发性结直肠癌。

5)如MLH1启动子CpG岛超甲基化检测结果为阴性,可再通过生殖系DNA基因检测证实为Lynch综合征相关的结直肠癌。

不过,中国临床肿瘤学学会2017年发布的结直肠癌诊疗指南[9]推荐,在检测出患者MSI高后应再检测其生殖系DNA基因以判断是否为Lynch综合征相关的结直肠癌。

根据PCR法检测结果,结直肠癌可分为3类:

1)如≥30%的重复位点显示MSI,则为MSI高的结直肠癌;

2)如<30%的重复位点显示MSI,则为MSI低的结直肠癌;

3)如没有重复位点显示MSI,则为微卫星稳定型(microsatellite stable, MSS)的结直肠癌。

1.2 免疫组织化学(immunohistochemistry, IHC)法检测步骤

IHC法被广泛用于鉴定一个或多个错配修复蛋白(MLH1、MSH2、MSH6和PMS2)的缺失。这些错配修复蛋白通常在正常组织中表达,并在切片上显示核染色阳性。缺乏特异性染色说明一个或多个错配修复蛋白基因的潜在失活。对错配修复蛋白缺失的结直肠癌可统称为错配修复缺陷的结直肠癌,临床意义上等同于MSI高的结直肠癌,而错配修复蛋白表达完整的结直肠癌则为MSS或MSI低的结直肠癌[6,10-11]。IHC法检测步骤如下:

1)使用IHC法检测MLH1、MSH2、MSH6和PMS2。

2)如MSH2、MSH6或PMS2的检测结果异常,则通过生殖系DNA基因检测证实为Lynch综合征相关的结直肠癌。

3)如MLH1的检测结果异常,继续进行BRAF V600E突变和MLH1启动子CpG岛超甲基化检测,以区分散发性结直肠癌和Lynch综合征相关的结直肠癌。

4)如BRAF V600E突变或MLH1启动子CpG岛超甲基化检测结果为阳性,诊断为散发性结直肠癌。

5)如BRAF V600E突变和MLH1启动子CpG岛超甲基化检测结果均为阴性,再通过生殖系DNA基因检测证实为Lynch综合征相关的结直肠癌。

最常见的IHC法检测结果是MSH2和MSH6染色正常,而MLH1和PMS2同时缺失,表明患者可能是Lynch综合征相关的结直肠癌或错配修复蛋白缺失的散发性结直肠癌,需进一步检测BRAF V600E突变和MLH1启动子CpG岛超甲基化来予以区分[6,10]。其他错配修复蛋白缺失,如MSH2、MSH6同时缺失或MSH6、PMS2的孤立缺失,极有可能是因基因生殖系突变导致的Lynch综合征,可对患者的血白细胞DNA或正常组织进行生殖系突变分析来予以明确。

1.3 PCR法和IHC法检测的一致性

MSI的PCR法和IHC法检测均具有高敏感性和特异性。PCR法检测MLH1/MSH2的敏感性为89%,检测MSH6的敏感性为77%。PCR法和IHC法检测的一致性>92%[12]。IHC法检测的敏感性为77% ~ 83%[13-14]。为提高检出率,临床上还常协同使用PCR法和IHC法检测,以发现可能被单一方法检测漏掉的错配修复缺陷的结直肠癌[15]。IHC法检测因具有操作简单和成本低等优点,且其结果有助于识别特定蛋白缺失、指导对特定基因的生殖系DNA检测,所以临床上常用作对结直肠癌患者进行初筛的手段。

2 MSI/错配修复状态检测的诊断作用

2.1 错配修复缺陷和Lynch综合征

Lynch综合征是一种常染色体显性疾病,由生殖细胞中错配修复蛋白基因(MLH1、MSH2、MSH6和PMS2)突变引起[16-18]。MSI高或IHC法检测发现一个或多个错配修复蛋白缺失均提示存在错配修复缺陷。约90%的Lynch综合征可归因于MLH1或MSH2突变[19-20]。MSH6突变导致Lynch综合征的很少,而单一PMS2缺失导致Lynch综合征的非常罕见[21]。

由Lynch综合征引发的结直肠癌占全部结直肠癌的2% ~ 4%,诊出年龄为44 ~ 61岁,早于散发性结直肠癌的69岁[22]。近70%的Lynch综合征相关的结肠癌发生于近端结肠[16]。从组织学看,Lynch综合征相关的结直肠癌常常是低分化的印戒细胞癌[10,17]。Lynch综合征患者的终生结直肠癌罹患风险在30% ~ 70%间,而普通人群的此风险为5.5%[17,22]。

此外,Lynch综合征患者罹患其他癌症的风险也很高,包括子宫内膜癌、卵巢癌、小肠癌、胃癌、膀胱癌、脑癌、肾癌、胆道癌和胆囊癌等,其中女性70岁前子宫内膜癌的累积罹患风险为32% ~ 42%[23-25]。携带错配修复缺陷基因的家庭成员罹患癌症的风险亦提高。因此,Lynch综合征诊断具有重要的临床意义。

2.2 MSI和散发性结直肠癌

MSI高的结直肠癌也可由MLH1启动子CpG岛的超甲基化引起,通常与BRAF c.1799T>A(p. V600E)突变有关[26-28]。约12%的散发性结直肠癌为MSI高的结直肠癌,IHC法检测常可发现同时存在MLH1和PMS2缺失,多由MLH1启动子CpG岛超甲基化所引起。这种体细胞突变会阻碍MLH1 mRNA的生成,导致MLH1缺失[29-30]。BRAF V600E突变仅见于MSI高的散发性结直肠癌中,在生殖系突变的肿瘤中未发现[31]。

如果IHC法检测显示MLH1/PMS2缺失,就应继续进行BRAF V600E突变或MLH1启动子CpG岛超甲基化检测以排除散发性结直肠癌。如BRAF V600E突变或MLH1启动子CpG岛超甲基化检测结果均为阴性,则应排除散发性结直肠癌可能,并继续进行生殖系突变分析。

2.3 MSI状态用于结直肠癌患者预后判断

与MSS的结直肠癌相比,MSI高的结直肠癌(包括散发性和Lynch综合征相关的结直肠癌)患者的临床表现较差,但预后更好[32-33]。Popat等[34]进行的一项荟萃分析纳入了32项研究,共计包括7 642例Ⅰ~ Ⅳ期的结直肠癌患者,其中1 277例为MSI高的患者,结果发现MSI高的结直肠癌患者的预后显着优于MSS的结直肠癌患者:MSI高的患者的总生存风险比为0.65(95%置信区间为0.59 ~ 0.71)。另一项纳入了2 940例根治性切除术后结直肠癌患者的临床试验也显示,MSI高的患者的预后较好,而MSI低和MSS患者的腹外复发更趋频繁[35]。然而,MacQuarrie等[36]指出,MSI高和MSS的Ⅲ期结直肠癌患者的所有淋巴结数和阴性淋巴结数均无差异。一项纳入了1 250例结直肠癌患者的单中心研究发现,MSI高的结直肠癌患者的淋巴结和远处转移风险较低,Ⅰ/Ⅱ期结直肠癌患者的无病生存期较长。但MSI高的Ⅲ期结直肠癌患者的预后较差,肿瘤侵袭性更强,特别是淋巴血管和会阴的侵袭率更高[37]。

Venderbosch等[38]进行的研究揭示了MSI状态与晚期结直肠癌患者总生存期之间的关联。他们对一线治疗转移性结直肠癌的4项Ⅲ期临床试验进行合并分析,发现错配修复缺陷患者的BRAF突变率远高于错配修复功能正常的患者(分别为34.6%和6.8%, P<0.001),且错配修复缺陷患者的无进展生存期(风险比为1.33, 95%置信区间为1.12 ~ 1.57)和总生存期(风险比为1.35, 95%置信区间为1.13 ~ 1.61)均显着降低。

上述研究结果提示,MSI高的Ⅰ/Ⅱ期结直肠癌患者的预后较好,但随着疾病进展,这种趋势将逐渐消失,甚至最后MSI高可能成为患者预后的负向预测因子。

2.4 MSI状态用于结直肠癌治疗效果预测

2.4.1 MSI状态与化疗

氟尿嘧啶常用于Ⅱ期结直肠癌患者的化疗。Guastadisegni等[39]就MSI状态对结直肠癌患者接受氟尿嘧啶化疗的临床意义进行了荟萃分析,共纳入31项研究、合计包括12 782例患者。结果证实,无论肿瘤T分期如何,患者的MSI状态均与其无病生存期(比值比为0.58, 95%置信区间为0.47 ~ 0.72; P<0.000 1)和总生存期(比值比为0.6, 95%置信区间为0.53 ~ 0.69; P<0.000 1)相关。氟尿嘧啶辅助化疗的长期生存数据来源于其中7项研究,并对MSI高和MSS的患者进行了分层。分析结果显示,MSS患者可自氟尿嘧啶辅助化疗中获益,而MSI高的患者的生存结局尚未显示有统计学意义。此外,有研究发现氟尿嘧啶用于MSI高的Ⅱ期结直肠癌患者的辅助化疗无益,提示可能与患者的错配修复缺陷相关[40-41]。由于预后良好且氟尿嘧啶辅助化疗疗效欠佳,许多研究者认为不应再对MSI高的Ⅱ期结直肠癌患者进行辅助化疗[42-44]。不过,对手术后Ⅲ期结直肠癌患者,不论他们的MSI状态如何,接受由氟尿嘧啶、亚叶酸和奥沙利铂组成的标准辅助化疗方案治疗均有益[45-46]。

Des Guetz等[47]进行的荟萃分析评估了MSI状态对转移性结直肠癌患者化疗疗效的潜在预测意义。该分析共包括6项研究的964例接受氟尿嘧啶单药或卡培他滨联合奥沙利铂和/或伊立替康化疗的患者,根据《实体瘤疗效评价标准(1.1版)》评价患者的缓解率,结果显示MSS和MSI高的患者的疗效没有显着差异(风险比为0.82, 95%置信区间为0.65 ~ 1.03; P=0.09)。

2.4.2 MSI状态与免疫治疗

最近的研究表明,MSI高的转移性结直肠癌对免疫检查点抑制剂治疗的响应良好[48-50]。MSI高的肿瘤含有的丰富的新抗原可诱发免疫反应。同时,由于MSI高的肿瘤自身的不稳定性和超突变性,检查点蛋白常常在此类肿瘤中高表达,包括程序性死亡受体-1(programmed cell death protein-1, PD-1)和程序性死亡受体配体-1(programmed cell death-ligand 1, PD-L1),会干扰机体自身T细胞的抗肿瘤作用[51]。通过对PD-1/PD-L1的靶向抑制,检查点抑制剂可再次活化T细胞,促使机体免疫系统攻击和杀灭肿瘤细胞[48-49]。

Le等[48]对转移性结直肠癌患者等进行了一项Ⅱ期临床试验,以评估派姆单抗(pembrolizumab)的临床疗效。结果显示,MSI高的结直肠癌患者和其他MSI高的肿瘤(如子宫内膜癌、胃癌和小肠癌等)患者经接受派姆单抗治疗,免疫相关的客观反应率分别为40%和71%,20周无进展生存率分别为78%和67%。然而,MSS的结直肠癌患者的响应率较低,20周无进展生存率仅为11%。

最近,另一种抗PD-1单克隆抗体纳武单抗(nivolumab)治疗MSI高的转移性结直肠癌患者的“Checkmate-142”试验数据也在欧洲肿瘤内科学学会年会上予以公开。纳武单抗单药治疗组共包括74例患者,客观缓解率为31.1%,中位无进展生存期为9.6个月,12个月无进展生存率为48.4%,中位总生存期尚未达到,12个月生存率为73.8%;纳武单抗联合依匹单抗(ipilimumab)治疗组的客观缓解率为55%,疾病控制率(>12周)为79%,中位缓解持续时间尚未达到,9个月生存率为88%。免疫治疗对MSI高的结直肠癌的疗效和耐受性均良好。

上述研究结果提示,MSI状态对结直肠癌治疗方案的选择有重要意义。免疫检查点抑制剂的毒性较化疗药物小,对体力状态较差的晚期患者有显着疗效。免疫检查点抑制剂治疗理论上亦可能使早期结直肠癌患者受益,而此正是今后需予澄清的一个重要临床问题。

3 结语

对MSI高的结直肠癌的筛查在临床上具有重要意义,不仅可预测患者的预后,而且可指导患者的治疗。最近发表的免疫治疗转移性结直肠癌的临床试验还表明,MSI状态可能是选择个体化治疗方案的关键指标。因此,应对新诊出的结直肠癌患者进行MSI状态检测。值得注意的是,除结直肠癌外,其他癌症如子宫内膜癌、胃癌和小肠癌等也可能表现为MSI高的肿瘤,MSI状态有望成为多种癌症患者的重要预后预测标志物[52-54]。

参考文献

[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.

[2] Chen W, Swanson BJ, Frankel WL. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists [J]. Diagn Pathol, 2017, 12(1): 24.

[3] National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: colon cancer (version 2. 2017) [EB/OL]. [2017-10-13]. https://www.nccn.org/ professionals/physician_gls/pdf/colon.pdf.

[4] Sepulveda AR, Hamilton SR, Allegra CJ, et al. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology [J]. J Clin Oncol, 2017, 35(13): 1453-1486.

[5] Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer [J]. Cancer Res, 1998, 58(22): 5248-5257.

[6] Hegde M, Ferber M, Mao R, et al. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis) [J]. Genet Med, 2014, 16(1): 101-116.

[7] Murphy KM, Zhang S, Geiger T, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers [J]. J Mol Diagn, 2006, 8(3): 305-311.

[8] National Institute for Health and Care Excellence. Molecular testing strategies for Lynch syndrome in people with colorectal cancer [EB/OL]. [2017-10-13]. http://www.nice. org.uk/guidance/dg27/chapter/1-Recommendations.

[9] 中国临床肿瘤学会(CSCO)结直肠癌诊疗指南工作组.中国临床肿瘤学会(CSCO)结直肠癌诊疗指南(2017版)[EB/OL]. [2017-10-13]. https://wenku.baidu.com/view/8cd1b 606c4da50e2524de518964bcf84b9d52df1.html.

[10] Samowitz WS. Evaluation of colorectal cancers for Lynch syndrome: practical molecular diagnostics for surgical pathologists [J]. Mod Pathol, 2015, 28(Suppl 1): S109-S113.

[11] Shia J, Ellis NA, Paty PB, et al. Value of histopathology in predicting microsatellite instability in hereditary nonpolyposis colorectal cancer and sporadic colorectal cancer [J]. Am J Surg Pathol, 2003, 27(11): 1407-1417.

[12] Palomaki GE, McClain MR, Melillo S, et al. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome [J]. Genet Med, 2009, 11(1): 42-65.

[13] Shia J, Ellis NA, Klimstra DS. The utility of immunohistochemical detection of DNA mismatch repair gene proteins [J]. Virchows Arch, 2004, 445(5): 431-441.

[14] Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry [J]. J Mol Diagn, 2008, 10(4): 293-300.

[15] Shia J, Stadler Z, Weiser MR, et al. Immunohistochemical staining for DNA mismatch repair proteins in intestinal tract carcinoma: how reliable are biopsy samples? [J]. Am J Surg Pathol, 2011, 35(3): 447-454.

[16] Lynch HT, de la Chapelle A. Hereditary colorectal cancer [J]. N Engl J Med, 2003, 348(10): 919-932.

[17] Lynch HT, Snyder CL, Shaw TG, et al. Milestones of Lynch syndrome: 1895-2015 [J]. Nat Rev Cancer, 2015, 15(3): 181-194.

[18] Boland CR, Goel A. Microsatellite instability in colorectal cancer [J]. Gastroenterology, 2010, 138(6): 2073-2087.e3.

[19] Casey G, Lindor NM, Papadopoulos N, et al. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer [J]. JAMA, 2005, 293(7): 799-809.

[20] Bonadona V, Bona?ti B, Olschwang S, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome [J]. JAMA, 2011, 305(22): 2304-2310.

[21] Gill S, Lindor NM, Burgart LJ, et al. Isolated loss of PMS2 expression in colorectal cancers: frequency, patient age, and familial aggregation [J]. Clin Cancer Res, 2005, 11(18): 6466-6471.

[22] Giardiello FM, Allen JI, Axilbund JE, et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-society Task Force on colorectal cancer [J]. Am J Gastroenterol, 2014, 109(8): 1159-1179.

[23] Aarnio M, Sankila R, Pukkala E, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes [J]. Int J Cancer, 1999, 81(2): 214-218.

[24] Bansidhar BJ. Extracolonic manifestations of Lynch syndrome[J]. Clin Colon Rectal Surg, 2012, 25(2): 103-110.

[25] Williams AS, Huang WY. The analysis of microsatellite instability in extracolonic gastrointestinal malignancy [J]. Pathology, 2013, 45(6): 540-552.

[26] Deng G, Bell I, Crawley S, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer [J]. Clin Cancer Res, 2004, 10(1 Pt 1): 191-195.

[27] Domingo E, Laiho P, Ollikainen M, et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing [J]. J Med Genet, 2004, 41(9): 664-668.

[28] Fearon ER. Molecular genetics of colorectal cancer [J]. Annu Rev Pathol, 2011, 6: 479-507.

[29] Kim JH, Shin SH, Kwon HJ, et al. Prognostic implications of CpG island hypermethylator phenotype in colorectal cancers[J]. Virchows Arch, 2009, 455(6): 485-494.

[30] Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1[J]. Cancer Res, 1998, 58(8): 1713-1718.

[31] Hall G, Clarkson A, Shi A, et al. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma [J]. Pathology, 2010, 42(5): 409-413.

[32] Merok MA, Ahlquist T, R?yrvik EC, et al. Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series [J]. Ann Oncol, 2013, 24(5): 1274-1282.

[33] Roth AD, Delorenzi M, Tejpar S, et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer [J]. J Natl Cancer Inst, 2012, 104(21): 1635-1646.

[34] Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis [J]. J Clin Oncol, 2005, 23(3): 609-618.

[35] Kim CG, Ahn JB, Jung M, et al. Effects of microsatellite instability on recurrence patterns and outcomes in colorectal cancers [J]. Br J Cancer, 2016, 115(1): 25-33.

[36] MacQuarrie E, Arnason T, Gruchy J, et al. Microsatellite instability status does not predict total lymph node or negative lymph node retrieval in stage III colon cancer [J]. Hum Pathol, 2012, 43(8): 1258-1264.

[37] Mohan HM, Ryan E, Balasubramanian I, et al. Microsatellite instability is associated with reduced disease specific survival in stage III colon cancer [J]. Eur J Surg Oncol, 2016, 42(11): 1680-1686.

[38] Venderbosch S, Nagtegaal ID, Maughan TS, et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: a pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies [J]. Clin Cancer Res, 2014, 20(20): 5322-5330.

[39] Guastadisegni C, Colafranceschi M, Ottini L, et al. Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data [J]. Eur J Cancer, 2010, 46(15): 2788-2798.

[40] Vilar E, Gruber SB. Microsatellite instability in colorectal cancer — the stable evidence [J]. Nat Rev Clin Oncol, 2010, 7(3): 153-162.

[41] Meyers M, Wagner MW, Hwang HS, et al. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidinemediated cell death and cell cycle responses [J]. Cancer Res, 2001, 61(13): 5193-5201.

[42] Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: a review[J]. Cancer Treat Rev, 2016, 51: 19-26.

[43] Jover R, Zapater P, Castells A, et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status [J]. Eur J Cancer, 2009, 45(3): 365-373.

[44] Strambu V, Garofil D, Pop F, et al. Microsatellite instability in the management of stage II colorectal patients [J]. Chirurgia(Bucur), 2013, 108(6): 816-821.

[45] Kim ST, Lee J, Park SH, et al. Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy [J]. Cancer Chemother Pharmacol, 2010, 66(4): 659-667.

[46] Zaanan A, Cuilliere-Dartigues P, Guilloux A, et al. Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin [J]. Ann Oncol, 2010, 21(4): 772-780.

[47] Des Guetz G, Uzzan B, Nicolas P, et al. Microsatellite instability does not predict the efficacy of chemotherapy in metastatic colorectal cancer. A systematic review and metaanalysis [J]. Anticancer Res, 2009, 29(5): 1615-1620.

[48] Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.

[49] Kim JH, Park HE, Cho NY, et al. Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers[J]. Br J Cancer, 2016, 115(4): 490-496.

[50] Dudley JC, Lin MT, Le DT, et al. Microsatellite instability as a biomarker for PD-1 blockade [J]. Clin Cancer Res, 2016, 22(4): 813-820.

[51] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.

[52] Cho J, Lee J, Bang H, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability [J]. Oncotarget, 2017, 8(8): 13320-13328.

[53] Howitt BE, Strickland KC, Sholl LM, et al. Clear cell ovarian cancers with microsatellite instability: a unique subset of ovarian cancers with increased tumor-infiltrating lymphocytes and PD-1/PD-L1 expression [J/OL]. Oncoimmunology, 2017, 6(2): e1277308 [2017-10-13]. doi: 10.1080/2162402X.2016.1277308.

[54] Naboush A, Roman CA, Shapira I. Immune checkpoint inhibitors in malignancies with mismatch repair deficiency: a review of the state of the current knowledge [J]. J Investig Med, 2017, 65(4): 754-758.