张琳 于舒婷 张苗苗

[摘要]目的:比较三维及二维头影测量差异,并初步建立Ricketts分析法测量项目的正常值范围。方法:样本由30名正常牙合成人组成,同时拍摄锥形束CT(CBCT)和头颅侧位片,对Rickitts分析法的16个项目进行测量。CBCT图像导入Simplant O&O软件进行三维头影测量。头颅侧位片用硫酸纸描图定点进行二维头影测量。用组内相关系数(ICC)评价操作者的测量信度,采用配对t检验对两组间的差异进行比较。结果:10个测量项目的测量结果具有统计学意义,包括软组织测量项目:Ls-EP,Em-OP;角度:FH-NPog,MP-NPog,FH/NA,PP-FH,FH-MP,BaN-FH;线距:L1-APog,L1-OP。CBCT组ICC均值为0.871,2D组为0.935。结论:CBCT的测量与头颅侧位片的测量结果中,10个测量项目的测量结果比较有显着性差异,CBCT的可靠度和精确性较好。初步推断出哈尔滨地区Ricketts分析法部分参数的CBCT三维头影测量正常牙合参考值范围。

[关键词]锥形束CT;头影侧位片;头影测量;正常牙合;三维

[中图分类号]R783.5 [文献标志码]A [文章编号]1008-6455(2019)01-0115-04

Study on CBCT of Normal Occlusion in Harbin Area by Rickitts Method

ZHANG Lin,YU Shu-ting, ZHANG Miao-miao

(Department of Orthodontics,College of Stomatology,Harbin Medical University, Harbin 150000,Heilongjiang,China)

Abstract: Objective To compare the differences between the three-dimensional and two-dimensional cephalometric measurements and to establish the normal value range of the project. Methods The samples were composed of 30 normal tooth synthesizers, and the CBCT and Lateral cephalometric radiograph were taken to measure the 16 items of Rickitts analysis. The CBCT image was imported into Simplant O& O software for 3D cephalometric measurement. The Lateral cephalometric radiograph was measured with the point of the sulfate paper. The correlation coefficient (ICC) was used to evaluate the measurement reliability in the operator, and the difference between the two groups was compared by the paired t test. Results The measurement results of 10 measurement items were statistically significant, including the soft tissue measurement project: Ls-EP, Em-OP; Angle: FH-NPog, MP-NPog, FH/NA, PP-FH, FH-MP, BaN-FH; Line distance: L1-APog, L1-OP. The ICC mean of CBCT group is 0.871, and the 2D group is 0.935. Conclusion The measurement results of CBCT and Lateral cephalometric radiograph were significantly different in 10 measurement items, and the reliability and accuracy of CBCT group were better than that of 2D group. It is inferred that the three-dimensional cephalometric of the CBCT of partial parameters of the Ricketts analysis method in the Harbin region is used to measure the normal tooth conjoint reference range.

Key words: CBCT; lateral cephalometric radiograph; cephalometric; normal teeth; the three dimensional

现代影像技术,如MRI和CT,使得对颅颌面的三维评估有了更高的准确性和重复性。然而,这两种技术在常规正畸治疗中,由于成本高、MRI获取时间长以及CT的高辐射水平而受到限制。1992年,日本学者Arai开发了口腔颌面部专用的锥形束CT(CBCT),CBCT目前被认为是颌面部成像的首选三维方法[1],与多层螺旋CT相比辐射水平低,对骨骼、牙齿分辨率高,目前CBCT具有广泛的临床应用前景,可用于阻生牙定位[2]、正畸牵引[3]、正畸前后对比[4]、腭中缝扩弓评价[5-6],评价腺样体[7],唇腭裂疗效评价[8],颌骨水平评估[9]、种植支抗[10]、偏牙合诊断[11]、正颌手术[12-13]、根长分析[14],阻塞性睡眠呼吸暂停分析[15]等。虽然CBCT使用广泛,然而三维头影测量正常牙合数据较少。本文旨在研究应用SimplantO&O软件对Rickitts分析法的16个测量项目进行测量,对2D组和3D组的差异性和可靠度进行分析,并得出三维头影测量的参考值。

1 材料和方法

1.1 研究对象:选择30名哈尔滨地区正常牙合成人志愿者为研究对象,其中男16名,女14名。在拍摄前,已获得研究对象的知情同意。

纳入标准:①年龄20~30岁;②符合个别正常牙合标准,拥有28颗恒牙(智齿除外),无牙体缺损及明显畸形;③第一磨牙、尖牙,颌骨中性关系;④牙齿排列整齐,无拥挤;⑤上下颌牙中线对齐,面部无偏斜;⑥无正颌手术史,正畸治疗史及颞下颌关节疾病。

1.2 数据采集:应用口腔全景X线机(Sinora)拍摄头颅侧位片,取自然头位。采用CBCT(KaVo)机对30名志愿者进行扫描,拍摄时取坐位,FH平面与地面平行,嘴唇自然闭合,上下牙保持牙尖交错牙合,曝光条件为电压120kv,电流5mA,层厚0.3mm。以DICOM格式将图片输出。

1.3 影像测量:用硫酸纸描图定点、0.3mm铅笔对2D组进行头影测量。CBCT组拍摄后数据导入SimplantO&O软件,进行三维测量,采用MPR法(轴向,矢状向,冠状向)联合定点,对Rickitts 分析法的16个测量项目进行测量。每组16个项目测量3次,每次间隔10d,均由同一人完成。见图1,表1。

1.4 统计学处理:研究采用SPSS 17.0软件进行统计分析,用组内相关系数(ICC)评价这些测量的重复性,计算各参数的均值和标准差,采用配对t检验对两组间的差异进行比较,P<0.05表示差异有统计学意义。

2 结果

CBCT的测量与头颅侧位片的测量结果中,10个测量项目结果比较有显着性差异,包括软组织测量项目:Ls-EP,Em-OP;角度:FH-NPog,MP-NPog,FH/NA,PP-FH,FH-MP,BaN-FH;线距:L1-APog,L1-OP。CBCT组ICC均值为0.871,2D组为0.935。二维及三维测量的ICC均大于0.75,说明可信度较好。见表2~3。

3 讨论

自1931年Broadbent提出新的X线技术以来,许多人提出从矢状面、水平面及轴面来实现三维分析正畸患者,CBCT于1998年引入口腔科,于2001年批准在美国使用,CBCT不像传统CT一样单独切片捕获图像,而是产生一束锥形X射线束,这样可以在一次拍摄捕获图像,获取个性化、无重叠的数字成像。与传统CT相比,设备和拍摄成本较低,辐射水平低,骨骼、牙齿分辨率较高,CBCT可以将数据输入和输出到其他应用程序,为了最大限度地利用CBCT提供诊断分析能力,三维头影测量分析的发展,需要对三维平面上的标志点进行充分的操作定义,并对其可靠性、重复性进行鉴定,关于CBCT的测量数据仍然很少,评估由CBCT数据生成或重建的头影测量图像的准确性及正常值参考范围对正畸医师非常重要。Periago[16]等对23个人体颅骨研究认为,当将3D测量值与颅骨直接测量值进行比较时,发现平均相差1.2%,这一差异在临床上是无关紧要的。Gribel[17]等对13名受试者研究得出头颅侧位片和CBCT相应测量有显着差异,正畸医师可以使用三维CT中的线性和角度测量方法,类似于常规的二维头颅图分析方法。吴明明[18]等对30名正常牙合受试者研究,初步推断哈尔滨地区Steiner和Jarabak分析法的CBCT三维头影测量参考值范围。张国强[19]等建立了以香港华人为基础的三维头影测量数据库。

本研究的目的是通过对Ricketts分析法的部分测量项目的测量,来评估三维头影测量方法的可靠性。本实验使用的是Simplant O&O软件。用2D方法对三维结构进行评估会造成信息丢失[20],像所有传统的X线拍摄技术一样,头颅侧位片只是将三维结构折叠到二维平面上。由此产生的解剖结构叠加使图像解释和标志点复杂化,这种扭曲和放大可能导致测量精度降低。如:下颌骨下缘往往会产生双重图像,这是由于患者左右两侧的放大率不同,与图像感受器的接近程度不同。本实验所用下颌平面为颏下点与两侧下颌角下缘点所组成的平面,避免了二维的投影误差,结果显示关于FH-MP,MP-NPog有统计学意义。

在本实验中,L1-OP,L1-Apog有统计学差异,这是因为通过MPR三维定点,能精确地找到下切牙切缘点。在75%的病例中,头影侧位X线片的观察者对下切牙切缘的定位不确定[21],二维常规X线片难以识别下切牙边缘,特别是在前牙拥挤患者的头颅图上很难找到下切牙点,因为使用的是最突出的切牙的切牙点,但在侧位片上的中切牙和侧切牙的区分似乎很困难。但是,如果侧切牙比中切牙更突出,则可能会出现误差。利用三维CT成像可以方便地定位这些标志,获得可靠的测量值,利用三维技术,可以最大限度地减小投影和识别误差造成的头影测量误差。L1-OP,Em-OP有统计学意义,Rickitts分析法中,使用的是功能牙合平面,以侧位片确定牙合平面时,因上下磨牙重叠。后牙咬合接触点定点困难,在CBCT中,矢状向和水平向能精确地确定咬合接触点,并形成牙合平面。

本次测量结果线性测量,如Ls-EP、ANS-Em,显示出最小的标准差,测量中矢状面的标准偏差一致<3。这与Farhadian等的研究类似[23]。而最高的标准差来自于U1/L1的测量,即U1/L1、U1/APog、L1/APog。CBCT组ICC均值为0.871,2D组为0.935。大多数的测量值与头颅侧位片比,均有显着性差异(P<0.05),有统计学意义。原因可能是因为3D测量涉及到骨骼结构和对称性的考虑,导致结果的差异。

本文还对Rickitts分析法中的软组织测量项目进行测量,如ANS-Em 、Ls-EP、Em-OP,结果显示Ls-EP、Em-OP有统计学意义,之前很多学者都只是对硬组织进行测量,传统X线软硬组织界限不清。但是有些标志点还无法确定,如下颌支中心点(Xi),对于这种需要其他多个标志点定义的点,无法在该软件中定点,所以ANS-Xi-pm无法测量,软件对于复杂的标志点还无法完成。

三维头影测量分析目前的主要缺点是费用较高,CT辐射量大。由于辐射对人体有累积效应,大多数正畸患者都是处于生长期的儿童,任何减少辐射暴露都是有益的,Silva等指出[24],从辐射防护的角度,传统的影像仍能向患者提供最低剂量的辐射。因此,在这种情况下,CBCT应只有在临床检查完成后,有可能提供新信息的情况下,才应要求拍摄,而不是常规扫描[25]。有证据表明CBCT扫描可能会改变大约30%的治疗计划[26]。如今,3D测量更适合那些复杂的颌面畸形,如不对称畸形或腭裂,埋伏阻生齿以及需要正畸手术患者的诊断。通过本次研究,认为三维头影分析可以成为一种相当可靠的方法。由于样本量限制,本实验只是初步得出了Ricketts分析法的部分参数正常牙合三维头影测量参考范围,为三维头影测量的建立提供参考。今后随着样本量的积累还将继续进行深入研究。

[参考文献]

[1]Fabian J?gera,James K.Mahb Axel Bumannc.Peridental bone changes after orthodontic tooth movement with fixed appliances: A cone-beam computed tomographic study[J].Angle Orthodont,2017,87(5):672-680.

[2]Isman O,Yilmaz HH,Aktan AMYi,et al.Indications for cone beam computed tomography in children and young patients in a Turkish subpopulation[J].Int J Paediatr Dent,2017,27(3):183-190.

[3]Silva AC,Capistrano A,Almeida-Pedrin RR,et al.Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-termevaluation[J].J Appl Oral Sci,2017,25(1):75-81.

[4]Alhammadi MS,Fayed MS,Labib A.Three-dimensional assessment of condylar position and joint spaces after maxillary first premolar extraction in skeletal Class II malocclusion[J].Orthod Craniofac Res,2017,20(2):71-78.

[5]Velasquez RL,Coro JC,Londono A,et al.Three-dimensional morphological characterization of malocclusions with mandibular lateral displacement usingcone-beam computed tomography[J].Cranio,2017,36(3):143-155.

[6]Park JJ,Park YC,Lee KJ,et al.Skeletal and dentoalveolar changes after miniscrew- assisted rapid palatal expansion in young adults: A cone-beam computed tomography study[J].Korean J Orthod,2017,47(2):77-86.

[7]Pacheco-Pereira C,Alsufyani NA,Major M,et al.Accuracy and reliability of orthodontists using cone-beam computerized tomography for assessment of adenoid hypertrophy[J].Am J Orthod Dentofacial Orthop,2016,150(5):782-788.

[8]Buyuk SK,Ercan E,Celikoglu MS,et al.Evaluation of dehiscence and fenestration in adolescent patients affected by unilateral cleft lip and palate: A retrospective cone beam computed tomography study[J].Angle Orthod,2016,86(3):431-436.

[9]Kawa D,Kunkel M,Heuser L,et al.What is the best position for palatal implants? A CBCT study on bone volume in the growing maxilla[J].Clin Oral Investig,2017,21(2):54

[10]Liu J,Chen HY,DoDo H,et al.Efficacy of cone-beam computed tomography in evaluating bone quality for optimum implant treatment planning[J].Implant Dent,2017,26(3):405-411.

[11]Lee SY,Choi DS,Jang I,et al.The genial tubercle: A prospective novel landmark for the diagnosis of mandibular asymmetry[J].Korean J Orthod,2017,47(1):50-58.

[12]Navarro RL,Oltramari-Navarro PV,Fernandes TM,et al.Comparison of manual, digital and lateral CBCT cephalometric analyses[J].J Appl Oral Sci,2013,21(2):167-176.

[13]Bobek S,Farrell B,Choi C,et al.Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method[J].J Oral Maxillofac Surg,2015,73(6):1143-1158.

[14]Honardar K,Assadian H,Shahab S,et al.Cone-beam computed tomography for the assessment of root-crown ratios of the maxillary and mandibular incisors in a Korean populatio[J].Korean J Orthod,2017,47(1):39-49.

[15]Bruwier A,Poirrier R,Albert Aet al.Three-dimensional analysis of craniofacial bones and soft tissues in obstructive sleep apnea using cone beam computed tomography[J].Int Orthod,2016,14(4):449-461.

[16]Periago DR,Scarfe M,Moshiri JP,et al.Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program[J].Angle Orthod,2008,78:387-395.

[17]Gribel BF, Gribel MN, Manzi FR,et al.From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment[J].Angle Orthod,2011,81(1):3-10.

[18]吴明明,刘志杰.个别正常牙合CBCT与头颅侧位片头影测量的比较分析[J].口腔医学,2016,11(6):523-527.

[19]Cheung LK,Chan YM,Jayaratne YS,et al.Three-dimensional cephalometric norms of Chinese adults in Hong Kong with balanced facial profile[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2011,112:e56-e73.

[20]Shokri A,Miresmaeili A,Farhadian N,et al.Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior-anterior cephalograms[J]. Dentomaxillofac Radio,2017,46(5):20160180.

[21]Stabrun AE,Danielsen K.Precision in cephalometric landmark identification[J]. Eur J Orthod,1982,4(3):185-196.

[22]Farhadian N,Miresmaeili AF,Mahvelati R,et al.A comparative cephalometric analysis between conventional and CBCT generated lateral cephalograms[J].Iran J Orthod,2009,7(4):308-321.

[23]Hariharan A,Diwakar NR,Jayanthi K,et al.The reliability of cephalometric measurements in oral and maxillofacial imaging: Cone beam computed tomography versus two-dimensional digital cephalograms[J].Indian J Dent Res,2016,27(4):370-377.

[24]Silva MA,Wolf U,Heinicke F,et al.Cone-beam computed tomography for routine orthodontic treatment planning:a radiation dose evaluation[J].Am J orthod Dentofacial Orthop,2008,133(5):640.

[25]Daniela G,Garib,Louise Resti Calil,et al.Is there a consensus for CBCT use in Orthodontics[J].Dental Press J Orthod,2014,19(5):136-149.

[26]Gorgulu S,Gokce SM,Olmez H,et al.Nasal cavity volume changes after rapid maxillary expansion in adolescents evaluated with 3-dimensional simulation and modeling programs[J].Am J Orthod Dentofacial Orthop,2011,140(5):633-640.

[收稿日期]2018-02-28 [修回日期]2018-05-12

编辑/李阳利

本文引用格式:张琳,于舒婷,张苗苗.应用Ricketts分析法研究哈尔滨地区正常牙合锥形束CT[J].中国美容医学,2019,28(1):115-118.