马运婷 郑月 王璐静 沙立辉 赵新湘

摘要:非酒精性脂肪性肝病(NAFLD)可导致心肌损伤,是心功能不全的危险因素。心肌应变(MS)检测技术是近年快速发展的新技术,已成为量化心肌形变、诊断及预测亚临床心肌损伤的常用工具。MS不仅能准确评估局部和整体心肌损伤,还能检测出射血分数正常的NAFLD患者心功能改变。认识NAFLD造成的心肌损伤,通过MS检测技术及时检测、诊断及预测NAFLD患者心功能障碍,对预防NAFLD患者进展为不可逆心力衰竭具有重要临床意义。就NAFLD造成心肌损伤的病理生理机制、MS检测技术及MS检测技术在NAFLD患者心房心室中的运用进行综述。

关键词:非酒精性脂肪肝病;超声心动描记术,多普勒;磁共振血管造影术;心肌应变;心肌损伤

中图分类号:R455.1,R445.2文献标志码:ADOI:10.11958/20221772

Research progress of myocardial strain detection technique in myocardial injury of

non-alcoholic fatty liver disease

MA Yunting, ZHENG Yue, WANG Lujing, SHA Lihui, ZHAO Xinxiang

Department of Radiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

Corresponding Author E-mail: zhaoxinxiang2918@outlook.com

Abstract: Non-alcoholic fatty liver disease (NAFLD) can lead to myocardial damage and is a risk factor for cardiac insufficiency. Myocardial strain (MS) detection is a new technique that has been rapidly developed in recent years and has become a common tool for quantifying myocardial deformation and diagnosing and predicting subclinical myocardial injury. MS can not only accurately assess local and global myocardial injury, but also detect changes of cardiac function in NAFLD patients with  normal ejection fraction. Understanding myocardial injury caused by NAFLD, timely detection, diagnosis and prediction of cardiac dysfunction in patients with NAFLD by MS detection technique are of great clinical significance in preventing the progression of irreversible heart failure. This article reviews the pathophysiological mechanisms of myocardial injury caused by NAFLD, MS detection techniques and the use of MS detection techniques in atria and ventricle in patients with NAFLD.

Key words: non-alcoholic fatty liver disease; echocardiography, doppler; magnetic resonance angiography; myocardial strain; myocardial damage

非酒精性脂肪性肝病(NAFLD)是一种与代谢及遗传密切相关的疾病,影响着全球约四分之一人口,随着人们生活方式改变和肥胖人数增加,NAFLD的患病率也呈逐年上升趋势[1]。既往研究显示,NAFLD会增加冠状动脉粥样硬化、心肌病、心律失常及心力衰竭的风险,从而导致心血管疾病发病率和死亡率增加[2]。此外,已有研究证实心血管疾病是NAFLD患者死亡的主要原因[3]。心肌应变(myocardial strain,MS)是评估心脏功能的一个重要指标,具有早期检测、诊断及预测亚临床心功能损伤以及对心功能分级的优势。目前已有部分学者将MS检测技术用于诊断及预测NAFLD患者心功能改变,但关于NAFLD患者心肌损伤的研究仍存在较多争议。本文就MS检测技术在NAFLD患者心肌损伤中的研究进展进行综述,为NAFLD的临床诊治提供新思路。

1 NAFLD患者心肌损伤机制

NAFLD是心功能障碍的独立影响因素,以舒张功能障碍为主。MS可以检测及诊断出射血分数(ejection fraction,EF)正常的NAFLD患者的心功能改变。NAFLD导致心功能障碍的潜在病理、生理机制如下:(1)心肌代谢受损。在NAFLD患者中,过多的三酰甘油(triglyceride,TG)及游离脂肪酸被心肌细胞摄取,从而诱导心脏胰岛素抵抗,导致心肌磷酸肌酸与腺苷三磷酸比值(PCr/ATP)降低,引起心肌代谢受损,从而导致心功能障碍[4]。Houghton等[5]研究亦发现,在NAFLD患者中,肝脏的脂肪量、代谢控制水平都与心肌损伤程度有关。(2)自主神经功能障碍。研究证实,NAFLD与心脏交感神经和副交感神经平衡受损有关,主要表现为交感神经活动增强和副交感神经活动减弱[6-7]。然而,持续的交感神经活动会导致左心室重构、室性心动过速、心源性猝死及心肌细胞结构和功能的改变;NAFLD的持续时间和严重程度直接影响自主神经功能障碍的程度[5]。因此,随着NAFLD患者严重程度增加,自主神经功能障碍越严重,心脏结构和功能也越易受损。(3)心外膜脂肪组织(epicardial adipose tissue,EAT)增厚。EAT是内脏脂肪的特殊形式,正常生理状况下,EAT发挥缓冲、抗炎、抗氧化及保温作用,但过多的脂肪堆积会促使血管周围保护性脂肪转变为有害性脂肪,从而导致冠状动脉病变及心室舒张功能障碍。有研究发现在NAFLD患者中,EAT的厚度和体积均会增加,且EAT的厚度不仅与NAFLD的严重程度有关,还与NAFLD患者左心室舒张早期二尖瓣血流速度峰值(E峰)与二尖瓣心房收缩期血流速度峰值(A峰)的比值呈负相关[8-9]。

2 MS的常见参数及评估技术

MS指在外力作用下心肌发生形变的程度,通常以百分比(%)表示。心肌纤维主要由纵向纤维和环形纤维组成。在心动周期中,心肌运动时2种纤维共同参与心肌的纵向、周向、径向及旋转运动,从而产生相应的应变。应变率(strain rate,SR)反映心肌发生形变的速度,不受周围组织牵拉及整体位移的影响,可准确反映心肌运动的细微变化[10]。目前,测量MS的参数主要有单纯形变和SR。单纯形变包括评估心室的纵向应变(LS)、周向应变(CS)、径向应变(RS)以及评估心房的储存应变(εs)、管道应变(εe)、泵应变(εa)。SR包括纵向收缩期应变率(LSR-S)、周向收缩期应变率(CSR-S)、径向收缩期应变率(RSR-S)、纵向舒张期应变率(LSR-D)、周向舒张期应变率(CSR-D)、径向舒张期应变率(RSR-D)、正向峰值应变率(SRs)、早期负向峰值应变率(SRe)、晚期负向峰值应变率(SRa)。虽然传统的左心室射血分数(LVEF)、心输出量及室壁厚度等指标可用来评估心肌的整体功能,但无法精确测量心肌形变,而MS在评估心肌局部和整体功能上优势突出。目前,用于评估MS的技术有超声心动图斑点追踪(STE)技术、计算机体层成像特征追踪(CT-FT)技术[11-12]、心脏磁共振(CMR)评估的组织标记技术、特征追踪成像(FTI)技术、心脏形变应力算法分析(DRA)技术[13]及应变编码技术等。其中,STE在MS评估中应用最广泛,但其准确性和可行性高度依赖于图像质量及检查者的操作。近几年,随着CT技术在空间分辨率和减少辐射剂量等方面的提高,关于CT-FT技术的研究日渐增多[14]。CT-FT评估MS的方法与STE技术相似,均是通过识别多个追踪点达到目的。研究显示,CT-FT与已建立的应变测量参数(CMR-FT和STE)有关,且具有高度可重复性和一致性[12]。然而,患者在进行CT-FT检查的过程中存在对比剂过敏的风险,且CT-FT具有一定的辐射性,因此,CT-FT对MS的评估主要用于回声窗较差和有CMR检查禁忌的患者。CMR组织标记技术是评估MS的金标准,但因影像分辨率低及需要特殊的扫描序列及复杂的图像采集限制了其临床应用。CMR-FT是一种新的后处理方法,可以回顾性地在标准平衡稳态自由进动电影序列上勾画心脏内外膜,测量出心肌局部及整体的MS值,临床操作便捷,被认为是评估心肌应变的首选技术[15]。目前,用于评估NAFLD患者心功能的技术主要是STE,其次是CMR-FT。

3 基于STE评估的NAFLD患者心肌损伤

3.1 NAFLD患者左心室变化

在NAFLD患者中,左心室损伤初期,代偿机制可以维持正常的每搏输出量,因此早期LVEF并不会下降,而MS可以检测到亚临床的心肌微小形变,主要表现为应变参数的改变(如LS、LSR降低)。Baktir等[16]利用二维斑点追踪超声心动图(two-dimensional STE,2D-STE)评估28例经肝活检确诊的无高血压及糖尿病的NASH患者左心室功能时发现,与健康对照组相比,NASH患者LVEF差异无统计学意义,但NASH患者LS、LSR及RS、RSR显着降低,且RS、LS与患者的舒张压、总胆固醇及低密度脂蛋白胆固醇水平无关,提示左心室舒张功能改变与NASH独立相关。Altekin等[17-18]利用2D-STE对非酒精性肝硬化患者的研究亦发现,与健康对照组比较,即便非酒精性肝硬化患者的LVEF及每搏输出量正常,但左心室的LS和LSR-S仍明显降低,CS和CSR-S明显增加,而2组RS、RSR-S差异并无统计学意义。因此,目前关于NAFLD患者LS、LSR的研究结果较一致,但关于RS、RSR、CS、CSR却有不同的结论,主要原因可能是心内膜下存在纵向纤维,纵向纤维对于心肌缺血、缺氧及压力负荷等因素更加敏感,从而导致在疾病早期LS和LSR较敏感。Leung等[19]也证实,LS和LSR是亚临床左心室功能障碍较敏感的指标。

三维斑点追踪超声心动图技术(3D-STE)缩短了检查时间,并且能够追踪心肌斑点运动,检测各个方向的MS,从而提供更准确的MS信息[20]。EL Amrousy等[21]利用3D-STE对没有任何心脏疾病的NAFLD患儿的研究显示,与健康对照组和无NAFLD组相比,LVEF正常的NAFLD患儿整体纵向应变(GLS)、整体周向应变(GCS)、整体径向应变(GRS)及整体面积应变(GAS)均降低,NAFLD严重程度与GLS呈高度负相关(r=-0.742,P<0.001),与GRS、GAS呈中度负相关(r分别为-0.515和-0.501,P<0.001),与GCS呈弱的负相关(r=-0.108,P=0.040)。Wang等[22-24]研究结论也与此相近。因此,NAFLD患者不仅存在亚临床左心室功能障碍,且随着NAFLD严重程度增加,左心室心功能越易受损。此外,VanWagner等[25]研究发现,随着时间的推移,NAFLD患者不仅左心室GLS、GCS出现恶化,LVEF也会降低。由此可见,在NAFLD患者中,左心室功能障碍可能在短时间内出现恶化。因此,识别NAFLD患者亚临床心肌损伤是必要的,有利于临床早期干预。

Sonaglioni等[26]研究显示,尽管2D-TTE评估的92例NAFLD患者左心室收缩功能正常,但仍有64.1%患者的GLS降低(大于20%);年龄、高血压、LSM、GLS及他汀类药物均是NAFLD患者亚临床动脉粥样硬化(颈总动脉内膜厚度>9 mm)独立影响因素,GLS大于20%是预测NAFLD患者亚临床动脉粥样硬化的最佳临界值。由此可见,在NAFLD患者中,MS除了可以检测NAFLD患者亚临床心功能障碍之外,还可以预测亚临床动脉粥样硬化。

3.2 NAFLD患者左心房变化

在1个心动周期中,左心房(left atrial,LA)具有储存、管道及泵功能。LASRe和LA主动射血分数(left atrial active ejection fraction,LAAEF)反映LA管道功能,并将血液从肺静脉输送到左心室,与左心室早期舒张功能有关。LASRa和LA被动射血分数(left atrial passive ejection fraction,LAPEF)反映LA的泵功能,并将LA剩余的血液泵入左心室,与左心室晚期舒张功能有关。LASRs反映LA储存功能,该功能是将血液从LA推到左心室,与LA舒张功能和左心室收缩功能有关。由此可见,评估NAFLD患者LA功能的亚临床改变,可为临床早期发现和预防相关心血管疾病提供理论依据。

Chang等[27-28]研究显示,在2型糖尿病合并NAFLD患者中,与无NAFLD组和轻度NAFLD组相比,中-重度NALFD患者LA管道功能降低,表现为LAPEF、LASRe、LASRs明显降低;其次,LA助力泵功能增强,LA主动收缩以代偿左心室舒张功能下降,表现为LAAEF和LASRa明显增加;调整了混杂因素(糖化血红蛋白和BMI)后,NAFLD与LASRs、LASRe及LASRa具有相关性。Lai等[29]研究显示,与无NAFLD患者相比,低纤维化评分NAFLD组(纤维化评分<-1.455)的LASRs、LASRe降低,LASRa增加;与低纤维化评分NAFLD组相比,高纤维化评分NAFLD组(纤维化评分≥-1.455)LASRs、LASRe、LASRa均降低,但LASRa差异无统计学意义,校正了年龄、性别及代谢因素后,肝纤维化评分与LASRs、LASRe相关。

综上所述,NAFLD会导致LA储存功能及管道功能受损,但关于NAFLD对泵功能的影响目前尚存很大争议,有待进一步大样本的研究证实。

4 NAFLD患者右心功能变化

既往关于NAFLD对心脏的研究大多基于左心功能,但由于NAFLD不仅可引起肝细胞过量的脂质积累,还可导致心肌细胞的脂质沉积,从而引起左右心功能均受损,因此对于右心功能的研究也不容忽视。Bekler等[30]利用常规超声心动图参数对NAFLD患者进行研究发现,NAFLD患者的右心室舒张功能受损,受损程度与NAFLD患者的肝硬化严重程度呈正相关。然而,在该研究中并未发现NAFLD患者的右心室收缩功能受损。一项利用2D-STE对90例经肝活检确诊的NAFLD患者的研究显示,NAFLD患者的右心室功能受损且NASH评分与右心室GLS呈负相关,NAFLD是右心室功能受损的独立影响因素[31]。Sonaglioni等[23]研究显示,尽管92例NAFLD患者的心室收缩功能正常正常,但右心室GLS受损的患者达31.5%,右心房整体应变受损患者达41.3%。以上研究提示,NAFLD患者存在亚临床的右心功能受损,但目前关于NAFLD与右心功能的研究尚且较少,有待进一步探索。

5 基于CMR的MS评估NAFLD患者心肌损伤

CMR被认为是无创性评估心脏结构和功能的参考标准,可提供详细的心脏功能指标,结合MR光谱技术,还可以量化心肌细胞内的TG[32]。Hallsworth等[33]利用CMR标记技术和磁共振波谱技术评估NAFLD患者左心室结构、功能、扭转及能量代谢变化时发现,与健康对照组相比,NAFLD患者的左心室能量代谢(PCr/ATP)无明显改变,但左心室的室壁厚度及偏心率显着升高,整体收缩期应变及GCS增加,心肌顺应性下降,表明在NAFLD患者中,即使能量代谢无损伤,但左心室形态和功能已发生了变化。另有研究显示,肥厚型心肌病患者GLS的降低与GCS降低有关,且心肌的扭转角度增加[34]。然而,Hallsworth等[33]对NAFLD患者的研究显示,虽然NAFLD患者的GLS降低,但心内膜下CS和GCS增加,且扭转角度不变,意味着NAFLD患者的心内膜下和心外膜下心肌收缩功能相对正常。通常情况下,如果心内膜下收缩功能受损,通过心外膜下心肌收缩抵消扭转的作用效果较差,将会导致扭转角度增加。目前,已有研究将人工智能技术与CMR相结合。Hammouda等[35]开发了一种新的自动化算法并使之与CMR电影相结合来评估小鼠的心脏功能和应变参数,其限制了来自心脏运动噪声的影响,可以准确评估心肌应变,且分析结果与MR标记技术测得的数据无明显差异。该人工智能与CMR的结合既体现了运用的可行性,又避免了临床上对CMR标记技术的需求。但目前尚鲜见关于CMR与人工智能结合评估NAFLD患者MS的研究。此外,CMR还可以将应变技术与心肌灌注、延迟增强、T1 mapping及细胞外容积分数等结合,从而从病理、生理等方面对NAFLD患者心脏进行分析,但目前关于NAFLD结合CMR的研究尚少见,且这类研究只结合了CMR波谱及MS,有关CMR组织特征成像的研究鲜见。

6 小结

MS不仅可用于检测、诊断EF正常的NAFLD患者心功能障碍,还可以预测NAFLD患者心功能损伤的严重程度及亚临床动脉粥样硬化,但目前大部分研究中NAFLD诊断并非经肝活检诊断,且各研究者间结果也并不一致。此外,虽然CMR被认为是测量MS的参考标准,但目前关于NAFLD结合CMR评估MS的研究尚少。

参考文献

[1] HUANG D Q,EL-SERAG H B,LOOMBA R. Global epidemiology of NAFLD-related HCC:trends,predictions,risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol,2021,18(4):223-238. doi:10.1038/s41575-020-00381-6.

[2] TARGHER G,COREY K E,BYRNE C D. NAFLD,and cardiovascular and cardiac diseases:factors influencing risk,prediction and treatment[J]. Diabetes Metab,2021,47(2):101215. doi:10.1016/j.diabet.2020.101215.

[3] TARGHER G,BYRNE C D,TILG H. NAFLD and increased risk of cardiovascular disease:clinical associations,pathophysiological mechanisms and pharmacological implications[J]. Gut,2020,69(9):1691-1705. doi:10.1136/gutjnl-2020-320622.

[4] RIJZEWIJK L J,JONKER J T,VAN DER MEER R W,et al. Effects of hepatic triglyceride content on myocardial metabolism in type 2 diabetes[J]. J Am Coll Cardiol,2010,56(3):225-233. doi:10.1016/j.jacc.2010.02.049.

[5] HOUGHTON D,ZALEWSKI P,HALLSWORTH K,et al. The degree of hepatic steatosis associates with impaired cardiac and autonomic function[J]. J Hepatol,2019,70(6):1203-1213. doi:10.1016/j.jhep.2019.01.035.

[6] KARAYANNIS G,KITSIOS G,KOTIDIS H,et al. Left atrial remodelling contributes to the progression of asymptomatic left ventricular systolic dysfunction to chronic symptomatic heart failure[J]. Heart Fail Rev,2008,13(1):91-98. doi:10.1007/s10741-007-9021-6.

[7] TARGHER G,MANTOVANI A,GRANDER C,et al. Association between non-alcoholic fatty liver disease and impaired cardiac sympathetic/parasympathetic balance in subjects with and without type 2 diabetes-The Cooperative Health Research in South Tyrol (CHRIS)-NAFLD sub-study[J]. Nutr Metab Cardiovasc Dis,2021,31(12):3464-3473. doi:10.1016/j.numecd.2021.08.037.

[8] LIU B,LI Y,LI Y,et al. Association of epicardial adipose tissue with non-alcoholic fatty liver disease:a meta-analysis[J]. Hepatol Int,2019,13(6):757-765. doi:10.1007/s12072-019-09972-1.

[9] FRACANZANI A L,PISANO G,CONSONNI D,et al. Epicardial Adipose Tissue (EAT) Thickness is associated with cardiovascular and liver damage in nonalcoholic fatty liver disease[J]. PLoS One,2016,11(9):e0162473. doi:10.1371/journal.pone.0162473.

[10] 王月,吴艳凯,崔彩霞,等. 心脏MRI应变技术评估高血压患者左室功能[J]. 中国医学影像技术,2021,37(5):689-693. WANG Y,WU Y K,CUI C X,et al. Cardiac MRI strain technique for evaluation on left ventricular function in patients with hypertension[J]. Chin J med imaging technol,2021,37(5):689-693. doi:10.13929/j.issn.1003-3289.2021.05.012.

[11] WANG R,FANG Z,WANG H,et al. Quantitative analysis of three-dimensional left ventricular global strain using coronary computed tomography angiography in patients with heart failure:comparison with 3T cardiac MR[J]. Eur J Radiol,2021,135:109485. doi:10.1016/j.ejrad.2020.109485.

[12] LI N,LIU T,LIU J,et al. Quantifying myocardial strain of the left ventricle in normal people using feature-tracking based on computed tomography imaging[J]. Diagnostics,2022,12(2):329. doi:10.3390/diagnostics12020329.

[13] LAMACIE M M,THAVENDIRANATHAN P,HANNEMAN K,et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis:comparison with MR feature tracking and speckle-tracking echocardiography[J]. Eur Radiol,2017,27(4):1404-1415. doi:10.1007/s00330-016-4514-0.

[14] 马亚南,孟庆超,王涵,等. CT测量左室心肌应变的可重复性及与超声对照的一致性研究[J]. 中华放射学杂志,2021,55(11):1147-1152. MA Y N,MENG Q C,WANG H,et al. The reproducibility of left ventricular strain measured by CT and its agreement with speckle tracking echocardiography[J]. Chin J Radiol,2021,55(11):1147-1152. doi:10.3760/cma.j.cn112149-20210209-00115.

[15] MILITARU S,PANOVSKY R,HANET V,et al. Multivendor comparison of global and regional 2D cardiovascular magnetic resonance feature tracking strains vs tissue tagging at 3T[J]. J Cardiovasc Magn Reson,2021,23(1):54. doi:10.1186/s12968-021-00742-3.

[16] BAKTIR A O, ?ARLI B, ALTEKIN R E,et al. Non alcoholic steatohepatitis is associated with subclinical impairment in left ventricular function measured by speckle tracking echocardiography[J]. Anatol J Cardiol,2015,15(2):137-142. doi:10.5152/akd.2014.5212.

[17] ALTEKIN R E,CAGLAR B,KARAKAS M S,et al. Evaluation of subclinical left ventricular systolic dysfunction using two-dimensional speckle-tracking echocardiography in patients with non-alcoholic cirrhosis[J]. Hellenic J Cardiol,2014,55(5):402-410.

[18] KARABAY C Y,KOCABAY G,KALAYCI A,et al. Impaired left ventricular mechanics in nonalcoholic fatty liver disease:a speckle-tracking echocardiography study[J]. Eur J Gastroenterol Hepatol,2014,26(3):325-331. doi:10.1097/MEG.0000000000000008.

[19] LEUNG D Y,NG A C. Emerging clinical role of strain imaging in echocardiography[J]. Heart Lung Circ,2010,19(3):161-174. doi:10.1016/j.hlc.2009.11.006.

[20] VOIGT J U,CVIJIC M. 2- and 3-Dimensional myocardial strain in cardiac health and disease[J]. JACC Cardiovasc Imaging,2019,12(9):1849-1863. doi:10.1016/j.jcmg.2019.01.044.

[21] EL AMROUSY D,ELGENDY E,AWAD M E,et al. Three-dimensional speckle tracking echocardiography for early detection of left ventricular dysfunction in children with non-alcoholic fatty liver diseases[J]. Cardiol Young,2021,31(4):562-567. doi:10.1017/S104795112000445X.

[22] WANG Q,MA W,XIA J. Nonalcoholic Fatty Liver Is Associated with further left ventricular abnormalities in patients with type 2 diabetes mellitus:a 3-dimensional speckle-tracking study:nonalcoholic fatty liver and left ventricular abnormalities in type 2 diabetes[J]. J Ultrasound Med,2018,37(8):1899-1911. doi:10.1002/jum.14536.

[23] SONAGLIONI A,CERINI F,CERRONE A,et al. Liver stiffness measurement identifies subclinical myocardial dysfunction in non-advanced non-alcoholic fatty liver disease patients without overt heart disease[J]. Intern Emerg Med,2022,17(5):1425-1438. doi:10.1007/s11739-022-02966-2.

[24] DONG Y, CUI H, SUN L, et al. Assessment of left ventricular function in type 2 diabetes mellitus patients with non-alcoholic fatty liver disease by three-dimensional speckle-tracking echocardiography[J]. Anatol J Cardiol,2020,23(1):41-48. doi:10.14744/AnatolJCardiol.2019.66805.

[25] VANWAGNER L B,WILCOX J E,NING H,et al. Longitudinal association of non-alcoholic fatty liver disease with changes in myocardial structure and function:the cardia study[J]. J Am Heart Assoc,2020,9(4):e014279. doi:10.1161/JAHA.119.014279.

[26] SONAGLIONI A,CERINI F,NICOLOSI G L,et al. Left ventricular strain predicts subclinical atherosclerosis in nonadvanced nonalcoholic fatty liver disease patients[J]. Eur J Gastroenterol Hepatol,2022,34(6):707-716. doi:10.1097/MEG.

0000000000002375.

[27] CHANG W,WANG Y,SUN L,et al. Evaluation of left atrial function in type 2 diabetes mellitus patients with nonalcoholic fatty liver disease by two‐dimensional speckle tracking echocardiography[J]. Echocardiography,2019,36(7):1290-1297. doi:10.1111/echo.14400.

[28] KOCABAY G,KARABAY C Y,COLAK Y,et al. Left atrial deformation parameters in patients with non-alcoholic fatty liver disease:a 2D speckle tracking imaging study[J].  Clin Sci (Lond),2014,126(4):297-304. doi:10.1042/CS20130298.

[29] LAI Y H,SU C H,HUNG T C,et al. Association of non-alcoholic fatty liver disease and hepatic fibrosis with epicardial adipose tissue volume and atrial deformation mechanics in a large asian population free from clinical heart failure[J]. Diagnostics (Basel),2022,12(4):916. doi:10.3390/diagnostics12040916.

[30] BEKLER A,GAZI E,ERBAG G,et al. Right ventricular function and its relationship with grade of hepatosteatosis in non-alcoholic fatty liver disease[J]. Cardiovasc J Afr,2015,26(3):109-113. doi:10.5830/CVJA-2014-068.

[31] SUNBUL M,KIVRAK T,DURMUS E,et al. Nonalcoholic steatohepatitis score is an independent predictor of right ventricular dysfunction in patients with nonalcoholic fatty liver disease[J]. Cardiovasc Ther,2015,33(5):294-299. doi:10.1111/1755-5922.12145.

[32] TEN HOVE M,NEUBAUER S. MR spectroscopy in heart failure—clinical and experimental findings[J]. Heart Fail Rev,2007,12(1):48-57. doi:10.1007/s10741-007-9003-8.

[33] HALLSWORTH K,HOLLINGSWORTH K G,THOMA C,et al. Cardiac structure and function are altered in adults with non-alcoholic fatty liver disease[J]. J Hepatol,2013,58(4):757-762. doi:10.1016/j.jhep.2012.11.015.

[34] R?SSEL I K,BROUWER W P,GERMANS T,et al. Increased left ventricular torsion in hypertrophic cardiomyopathy mutation carriers with normal wall thickness[J]. J Cardiovasc Magn Reson,2011,13(1):3. doi:10.1186/1532-429X-13-3.

[35] HAMMOUDA K,KHALIFA F,ABDELTAWAB H,et al. A new framework for performing cardiac strain analysis from cine MRI imaging in mice[J]. Sci Rep,2020,10(1):7725. doi:10.1038/s41598-020-64206-x.

(2022-11-03收稿 2023-01-13修回)

(本文编辑 陆荣展)