李锐楷 王鹏 李毓琪 尉秀清

【摘要】 目的 从氧化应激和内质网应激的角度探讨黄连素(BBR)对非酒精性脂肪性肝炎(NASH)小鼠肝脏炎症的减轻作用。方法 将24只C57BL/6J小鼠随机分为4组,NASH和NASH+BBR组小鼠饲喂高脂高果糖高胆固醇饲料28周以诱导NASH疾病模型,正常维持饲料(CD)和CD+BBR组小鼠给予正常维持饲料,在造模的第25周开始给予CD+BBR组和NASH+BBR组每日1次200 mg/(kg·d)的BBR灌胃,治疗共持续4周。记录小鼠每周体质量;给药第3周时进行葡萄糖耐量实验和胰岛素抵抗实验;治疗结束后检测血清ALT、AST、甘油三酯、总胆固醇、LDL-C、HDL-C含量,检测肝脏甘油三酯及总胆固醇含量;对肝脏进行HE、油红O和Masson染色;qPCR法检测肝脏组织炎症因子TNF-α和IL-1β mRNA表达水平;比色法检测肝脏组织氧化应激指标丙二醛、总超氧化物歧化酶活性和总抗氧化能力水平;蛋白免疫印迹法检测肝脏组织内质网应激相关通路蛋白表达水平。结果 成功构建NASH小鼠疾病模型。与NASH组小鼠比较,经过BBR治疗,抑制NASH+BBR组小鼠体质量增加,改善糖耐量异常情况,增加胰岛素敏感性,改善肝功能及高脂血症(P均< 0.05);肝脏病理切片可见脂肪变性减轻,炎性细胞浸润减少,但纤维化无改善作用;肝脏炎症因子mRNA表达水平下降(P均< 0.05);肝脏组织氧化应激因子丙二醛水平下降,抗氧化因子总超氧化物歧化酶活性和总抗氧化能力水平升高(P均< 0.05);内质网应激标志物GRP78蛋白表达量及PERK/eIF2α/ATF4/CHOP内质网应激信号通路下调(P均< 0.05)。结论 BBR治疗能够改善NASH小鼠的超重、糖脂代谢紊乱和肝功能异常问题,能够减轻肝脏脂肪变性及炎症情况,但对纤维化无改善。BBR减轻NASH炎症反应的可能机制是抑制肝脏的氧化应激和内质网应激。

【关键词】 黄连素;非酒精性脂肪性肝炎;炎症;氧化应激;内质网应激

Berberine alleviates hepatic inflammation of nonalcoholic steatohepatitis mice by inhibiting oxidative stress and endoplasmic reticulum stress Li Ruikai△, Wang Peng, Li Yuqi, Wei Xiuqing.△Department of Gastroenterology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China

Corresponding author, Wei Xiuqing, E-mail: weixq@mail.sysu.edu.cn

【Abstract】 Objective To evaluate the alleviating effect of berberine (BBR) on hepatic inflammation in nonalcoholic steatohepatitis (NASH) mice from the perspectives of oxidative stress and endoplasmic reticulum stress. Methods A total of 24 C57BL/6J mice were randomly divided into 4 groups. Mice in the NASH and NASH+BBR groups were fed with high-fat, high-fructose, and high-cholesterol diets for 28 weeks to induce the NASH disease models, whereas mice in the CD and CD+BBR groups were given with normal diets, and mice in the CD+BBR and NASH+BBR groups were given with 200 mg/(kg·d) of BBR by gavage once a day starting from the 25th week for 4 consecutive weeks. The body weight of mice was recorded weekly. Glucose tolerance test and insulin resistance test were performed at the 3rd week of administration. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride, total cholesterol, LDL cholesterol, and HDL cholesterol levels, and hepatic triglyceride and total cholesterol levels were measured at the end of treatment. Liver samples were treated with HE, Oil-Red O and Masson staining. The expression levels of liver inflammatory factors of TNF-α and IL-1β mRNA were detected by qPCR. The levels of malondialdehyde, total superoxide dismutase activity and total antioxidant capacity, indicators of oxidative stress in liver tissues were assessed by colorimetric assay. The expression levels of proteins in the endoplasmic reticulum stress-related pathways in liver tissues were detected by Western blot. Results NASH mouse models were successfully established. Compared with the mice in the NASH group, weight gain was inhibited, glucose tolerance abnormality was mitigated, insulin sensitivity was increased and liver function and hyperlipidemia were improved after treatment with BBR in the NASH+BBR group (all P < 0.05). Hepatic pathological slices showed a reduction in steatosis , and a decrease in inflammatory cell infiltration, but there was no significant alleviation in fibrosis. The mRNA expression levels of liver inflammatory factors were down-regulated (all P < 0.05). The levels of hepatic tissue oxidative stress factor of malondialdehyde were decreased, whereas those of antioxidant factors of total superoxide dismutase activity and total antioxidant capacity were increased (all P < 0.05). The expression levels of endoplasmic reticulum stress marker of GRP78 protein and PERK/eIF2α/ATF4/CHOP endoplasmic reticulum stress signaling pathway were significantly down-regulated (all P < 0.05). Conclusions BBR can alleviate overweight, glycolipid metabolism disorder and liver function abnormality in NASH mice. Besides, it can also mitigate hepatic steatosis and inflammation, but it has no significant effect on the alleviation of fibrosis. BBR mitigates inflammatory response in NASH mice probably by suppressing oxidative stress and endoplasmic reticulum stress in the liver.

【Key words】 Berberine; Nonalcoholic steatohepatitis; Inflammation; Oxidative stress; Endoplasmic reticulum stress

代谢相关脂肪性肝病(MAFLD)曾用名为非酒精性脂肪性肝病(NAFLD),是指在无过量饮酒史及明确的肝损伤因素条件下,以肝脏脂肪变性为主要特征的一组慢性疾病,与胰岛素抵抗和遗传易感性密切相关,常与肥胖、2型糖尿病以及代谢综合征等疾病并存。MAFLD疾病谱包括非酒精性脂肪肝(NAFL)、非酒精性脂肪性肝炎(NASH)及其相关肝硬化和肝细胞癌[1-3]。虽然其发生机制至今未完全明确,但在目前广泛接受的“多重打击”学说发病机制中,过度的氧化应激和内质网应激被认为是参与NASH发生发展的重要机制[4-6]。

本研究首先通过饲喂高脂高果糖高胆固醇饲料成功诱导NASH疾病小鼠模型;其次验证了黄连素(BBR)对NASH小鼠的治疗效果;最后从氧化应激和内质网应激的角度探讨BBR对NASH小鼠肝脏炎症减轻的可能机制。

材料与方法

一、材 料

1.实验试剂

高脂高果糖高胆固醇饲料(Research Diets,美国),BBR(Sigma,美国),甘油三酯、总胆固醇、丙二醛、总超氧化物歧化酶活性(T-SOD)和总抗氧化能力(T-AOC)测定试剂盒(Elabscience,武汉),GRP78 BiP Rabbit mAb、Phospho-PERK(Thr982)

Rabbit pAb、PERK Rabbit mAb、Phospho-eIF2α(Ser51)Rabbit mAb、eIF2α Mouse mAb、ATF4 Rabbit pAb、DDIT3/CHOP Rabbit mAb(zen-bio,成都),Anti-beta Actin Rabbit pAb(Servicebio,武汉)。

2.实验动物

24只6~8周龄SPF级雄性C57BL/6J小鼠,体质量20~25 g,购自北京维通利华实验动物技术有限公司,实验动物许可证号:SCXK(浙)2019-0001。该研究通过大学动物伦理委员会的批准(批件号:IACUC-20210112-03)。

二、方 法

1.分组、造模与给药

小鼠适应性喂养7 d后随机分为4组,每组6只,分别为正常维持饲料(CD)、CD+BBR、NASH和NASH+BBR组。NASH组和NASH+BBR组小鼠给予28周的高脂高果糖高胆固醇饲料,CD组和CD+BBR组小鼠给予正常维持饲料,在第25周开始给予CD+BBR组和NASH+BBR组每日1次

200 mg/(kg·d)的BBR灌胃,CD组和NASH组给予同等体积的体积分数为0.5%羧甲基纤维素钠混悬液灌胃,治疗共持续4周。记录小鼠每周体质量。

2.葡萄糖耐量实验(IPGTT)和胰岛素抵抗实验(IPITT)

在给予BBR治疗第3周进行IPGTT和IPITT以评估小鼠血糖代谢能力。禁食禁水12 h后,按照体质量2 g/kg给予小鼠腹腔注射葡萄糖溶液,从小鼠尾部采血检测注射后0、15、30、60、120 min的血糖水平[7]。间隔3 d进行IPITT实验,禁食禁水12 h后,按照体质量0.8 U/kg给予小鼠腹腔注射短效诺和灵R胰岛素,检测注射后0、15、30、60、120 min血糖值,并根据血糖-时间图计算曲线下面积(AUC),单位以毫摩尔/升×分钟(mmol/L·min)表示[8]。

3.血清和肝脏指标测定

经小鼠眼眶后静脉丛采集全血,室温静置1 h后,4 ℃ 1 000×g离心15 min取上层血清,使用全自动生化分析仪检测ALT、AST、甘油三酯、总胆固醇、LDL-C和HDL-C水平;冰上迅速分离小鼠肝脏进行称重,按照检测试剂盒说明书检测其甘油三酯、总胆固醇、丙二醛、T-SOD和T-AOC水平。

4.肝脏组织病理学评价

对小鼠肝脏组织进行HE、油红O和Masson染色,由专业病理科医师阅片,参照2010年《非酒精性脂肪性肝病诊疗指南》进行NAFLD活动度积分(NAS)和肝纤维化评分[9]。肝脏系数(%)= 肝脏重量(g)/小鼠体质量(g)。

5.组织RNA提取和qPCR检测

使用TRIzol试剂提取小鼠肝脏组织总RNA,以总RNA为模板反转录生成cDNA,采用实时荧光定量PCR检测仪进行qPCR。反应体系配制及反应程序设置均按照说明书进行。目的基因的相对表达量结果使用2-∆∆Ct方法进行计算。

6.总蛋白提取及蛋白免疫印迹

使用总蛋白裂解液提取肝脏总蛋白,BCA蛋白定量法测量浓度,进行聚丙烯酰胺凝胶电泳,应用转膜仪将蛋白印迹转移至PVDF膜上,室温封闭2 h,一抗4 ℃孵育过夜,对应的二抗室温孵育2 h,利用化学发光法显像,应用Image J图像分析软件进行灰度分析。

三、统计学处理

采用SPSS 26.0统计软件进行数据处理,计量资料用描述。符合正态分布的多组间比较采用单因素方差分析,两两比较采用LSD法(方差齐时)或Tamhane’T2法(方差不齐时)。P < 0.05为差异有统计学意义。

结 果

一、小鼠体质量变化

饲喂高脂高果糖高胆固醇饲料的小鼠体质量呈上升趋势,在第2周与CD组小鼠体质量相比,NASH组小鼠体质量增加具有统计学意义(F=9.712,P < 0.05),差异持续至实验终点。NASH+BBR组小鼠在经过BBR治疗1周后,与NASH组小鼠相比体质量下降,差异有统计学意义(F=398.797,P < 0.05),CD+BBR组小鼠在治疗2周后,体质量较CD组相比下降,差异有统计学意义(F=427.005,P < 0.05)。见图1。

二、小鼠糖耐量及胰岛素抵抗情况

NASH组小鼠空腹血糖水平较CD组升高[(8.57±0.91) mmol/L vs. (6.78±0.58)mmol/L,F=6.647,P < 0.05)],见图2C。NASH组小鼠在给予葡萄糖溶液注射后,血糖水平峰值及AUC值均高于CD组小鼠(P均< 0.05),而 NASH+BBR组小鼠血糖情况改善(P均< 0.05),见图2A、D。NASH组小鼠在葡萄糖耐量受损的情况下同时出现了胰岛素抵抗(P均< 0.05),给予BBR治疗后,小鼠对胰岛素的敏感性得到改善(P均< 0.05),见图2B、E。

三、小鼠血清和肝脏生化参数

与CD组小鼠对比, NASH组小鼠血清ALT、AST、甘油三酯、总胆固醇和LDL-C水平增加,HDL-C水平降低(P均< 0.05)。与NASH组小鼠对比,经过4周BBR治疗的NASH+BBR组小鼠,血清ALT、AST、甘油三酯、总胆固醇、LDL-C水平下降,血清HDL-C水平上升(P均< 0.05)。见表1。

四、小鼠肝脏组织病理学评价

NASH组小鼠肝脏体积增大,呈淡黄色,有油腻感,边缘圆钝。镜下可见NASH特征性病变:大小不等的脂肪空泡和脂滴;部分肝细胞气球样变;小叶内混合性炎症细胞浸润;胶原纤维沉积。而NASH+BBR组小鼠肝脏除胶原纤维沉积情况外,其他病理情况均有所改善。见图3A。

NASH+BBR组小鼠肝脏质量及肝脏系数较NASH组下降[(2.23±0.08)g vs.(3.61±0.14)g,P < 0.05;(6.17±0.17)% vs.(8.25±0.34)%,P < 0.05)]。见图3B、C。NASH+BBR组小鼠NAS评分降低(6.00±0.89 vs. 4.25±0.76,P < 0.05),但间质纤维组织增生情况没有改善,纤维化评分未见统计学差异(1.67±0.52 vs. 1.50±0.55,P > 0.05)。见图3D、E。

五、小鼠肝脏组织炎症因子指标

与CD组小鼠比较,NASH组小鼠肝脏组织中炎症因子TNF-α和IL-1β的mRNA表达水平均升高(FIL-1β=13.508,FTNF-α=19.458,P均&lt; 0.05);NASH+

BBR组小鼠肝脏组织中炎症因子TNF-α和IL-1β的mRNA表达水平均降低(P均< 0.05)。见图4。

六、小鼠肝脏组织氧化应激指标

与CD组小鼠比较,NASH组小鼠肝脏组织中丙二醛水平升高(P < 0.05),T-AOC水平和T-SOD活性降低(P均< 0.05);而与NASH组比较,NASH+BBR组小鼠肝脏组织中丙二醛水平降低(P < 0.05),T-SOD活性和T-AOC水平升高(P均< 0.05)。见表2。

七、小鼠肝脏内质网应激相关蛋白表达水平

与CD组比较,NASH组小鼠肝脏内质网应激反应标志物GRP78蛋白和内质网应激相关PERK信号通路蛋白p-PERK、p-eIF2α、ATF4和CHOP蛋白表达水平均升高(FGRP78=9.800,Fp-PERK=4.596,Fp-eIF2α=

20.558,FATF4=22.760,FCHOP=19.191,P均< 0.05);NASH+BBR组小鼠肝脏组织中GRP78、p-PERK、p-eIF2α、ATF4和CHOP蛋白表达水平相较NASH组小鼠均降低(P均< 0.05)。见图5。

讨 论

MAFLD作为全球慢性肝病的主要原因,与肝细胞癌和死亡等不良预后相关,亚洲的总体患病率已经超过29%,其临床负担日益增加[10-11]。从NAFL到NASH的转变是肝脏损伤进展的重要一步,在如今被广泛认可的“多重打击”学说中,认为脂毒性、氧化应激、内质网应激、炎性细胞因子等多重打击因素,可使肝脂肪变性向脂肪性肝炎发展。 所以抗氧化应激和抗内质网应激也成为NASH治疗的可能策略[12-14]。

BBR亦称为小檗碱,是最初从中草药黄连分离出来的一种季铵型异喹啉类生物碱,多年来的临床研究已证明BBR对MAFLD具有积极的治疗作用,但其机制暂未完全明确[15-18]。因此,本研究首先验证了BBR对于NASH小鼠的治疗作用,结果表明给予BBR治疗,可以减轻NASH小鼠的体质量、改善其糖耐量受损和胰岛素抵抗问题,还可以降低NASH小鼠的高脂血症,改善肝功能和减轻肝脏脂肪变性。这一结果与先前他人所报道的研究结果相符[19-21]。

其次我们通过qPCR检测和NAS评分,证实BBR不仅可以减少肝脏炎症因子TNF-α和IL-1β mRNA的表达水平,而且可以减少肝脏组织中小叶内炎症细胞的浸润,但对NASH纤维化并无改善作用。而BBR如何减轻肝脏的炎症反应具体机制需进一步深入研究。

氧化应激及内质网应激作为机体的保护性应激反应,与NF-κB途径、NLRP3炎症小体和TLR4途径等炎症反应信号通路相偶联,通过引发炎症反应广泛参与炎症性疾病的病理过程,而炎症反应又会使氧化应激及内质网应激增强[22-26]。本研究从氧化应激和内质网应激的角度对BBR减轻肝脏炎症反应的可能机制进行探讨。

肝细胞过度蓄积的游离脂肪酸会使线粒体氧化反应增加,当氧化反应产生的活性氧物质超过细胞抗氧化能力时,便会引起氧化应激。我们通过测量氧化应激因子丙二醛水平和体内清除自由基的主要抗氧化因子T-SOD和T-AOC水平,发现 NASH小鼠肝脏组织细胞的氧化应激水平上升,而BBR治疗可以减轻NASH小鼠肝脏组织细胞的氧化应激水平。

肝细胞内过多的游离脂肪酸还会通过破坏内质网结构及钙离子稳态,使内质网激活未折叠蛋白反应(UPR),从而诱发内质网应激以减少细胞内异常蛋白的聚集,在UPR中PERK信号通路起到重要的作用[27-29]。我们的研究结果表明,NASH组小鼠肝脏组织中内质网应激标志蛋白GRP78蛋白水平表达升高,提示NASH小鼠肝脏组织细胞内质网处于应激状态;而NASH+BBR组小鼠肝脏GRP78蛋白水平表达下降,表明BBR治疗可以减轻内质网应激,随后我们检测PERK信号通路的蛋白表达,发现BBR治疗可通过下调

PERK/eIF2α/ATF4/CHOP信号通路的蛋白表达,从而减轻NASH小鼠肝脏的内质网应激。

综上所述,BBR治疗有益于NASH小鼠体质量控制、改善糖脂代谢紊乱、减轻肝功能异常,缓解肝脏脂肪变性及炎症情况,但对纤维化无改善。缓解肝脏炎症情况的可能机制是抑制氧化应激和内质网应激PERK/eIF2α/ATF4/CHOP信号通路,从而起到保护肝脏的积极作用。

参 考 文 献

[1] Bessone F, Razori M V, Roma M G. Molecular pathways of nonalcoholic fatty liver disease development and progression[J]. Cell Mol Life Sci, 2019, 76(1): 99-128.

[2] Kumar S, Duan Q, Wu R, et al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Adv Drug Deliv Rev, 2021, 176: 113869.

[3] Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans[J]. Mol Metab, 2021, 50: 101122.

[4] Farrell G C, Haczeyni F, Chitturi S. Pathogenesis of NASH: how metabolic complications of overnutrition favour lipotoxicity and pro-inflammatory fatty liver disease[J]. Adv Exp Med Biol, 2018, 1061: 19-44.

[5] Gabbia D, Cannella L, De Martin S. The role of oxidative stress in NAFLD-NASH-HCC transition-focus on NADPH oxidases[J]. Biomedicines, 2021, 9(6): 687.

[6] Lebeaupin C, Vallée D, Hazari Y, et al. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease[J]. J Hepatol, 2018, 69(4): 927-947.

[7] Andrikopoulos S, Blair A R, Deluca N, et al. Evaluating the glucose tolerance test in mice[J]. Am J Physiol Endocrinol Metab, 2008, 295(6): E1323-E1332.

[8] Tang H, Zeng Q, Tang T, et al. Kaempferide improves glycolipid metabolism disorder by activating PPARγ in high-fat-diet-fed mice[J]. Life Sci, 2021, 270: 119133.

[9] 中华医学会肝脏病学分会脂肪肝和酒精性肝病学组. 非酒精性脂肪性肝病诊疗指南[J]. 中国肝脏病杂志(电子版), 2010, 2(4): 43-48.

Fatty Liver and Alcoholic Liver Disease Group, Liver Disease Branch, Chinese Medical Association.Guidelines for diagnosis and treatment of nonalcoholic fatty liver disease[J]. Chin J Liver Dis Electron Version, 2010, 2(4): 43-48.

[10] Li J, Zou B, Yeo Y H, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 389-398.

[11] De Roza M A, Goh G B B. The increasing clinical burden of NAFLD in Asia[J]. Lancet Gastroenterol Hepatol, 2019, 4(5): 333-334.

[12] Wang Y, Zhou X, Zhao D, et al. Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes[J]. PLoS One, 2020, 15(5): e0232630.

[13] Chen Z, Tian R, She Z, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141.

[14] Mak K K, Zhang S, Chellian J, et al. Swietenine alleviates nonalcoholic fatty liver disease in diabetic mice via lipogenesis inhibition and antioxidant mechanisms[J]. Antioxidants, 2023, 12(3): 595.

[15] Zhou M, Deng Y, Liu M, et al. The pharmacological activity of berberine, a review for liver protection[J]. Eur J Pharmacol, 2021, 890: 173655.

[16] Suárez M, Boqué N, Del Bas J M, et al. Mediterranean diet and multi-ingredient-based interventions for the management of non-alcoholic fatty liver disease[J]. Nutrients, 2017, 9(10): 1052.

[17] Bansod S, Saifi M A, Godugu C. Molecular updates on berberine in liver diseases: bench to bedside[J]. Phytother Res, 2021, 35(10): 5459-5476.

[18] 林峰, 吴洁, 王晓, 黄引平, 等. 黄连素改善妊娠期糖尿病大鼠胰岛素抵抗及其机制研究[J]. 中华全科医学, 2019, 17(10): 1647-1651.

Lin F, Wu J, Wang X, et al. Experimental study of berberine improving insulin resistance in gestational diabetes mellitus rat model and its possible mechanisms[J]. Chin J Gen Pract, 2019, 17(10): 1647-1651.

[19] Wei X, Wang C, Hao S, et al. The therapeutic effect of berberine in the treatment of nonalcoholic fatty liver disease: a meta-analysis[J]. Evid Based Complementary Altern Med, 2016, 2016: 3593951.

[20] Cicero A F G, Colletti A, Bellentani S. Nutraceutical approach to non-alcoholic fatty liver disease (NAFLD): the available clinical evidence. Nutrients, 2018, 10(9): 1153.

[21] Sun Y, Xia M, Yan H, et al. Berberine attenuates hepatic steatosis and enhances energy expenditure in mice by inducing autophagy and fibroblast growth factor 21[J]. Br J Pharmacol, 2018, 175(2): 374-387.

[22] Farzanegi P, Dana A, Ebrahimpoor Z, et al. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation[J]. Eur J Sport Sci, 2019, 19(7): 994-1003.

[23] Peng M L, Fu Y, Wu C W, et al. Signaling pathways related to oxidative stress in diabetic cardiomyopathy[J]. Front Endocrinol, 2022, 13: 907757.

[24] Deng J, Lu P D, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2[J]. Mol Cell Biol, 2004, 24(23): 10161-10168.

[25] Liu C M, Zheng G H, Ming Q L, et al. Protective effect of quercetin on lead-induced oxidative stress and endoplasmic reticulum stress in rat liver via the IRE1/JNK and PI3K/Akt pathway[J]. Free Radic Res, 2013, 47(3): 192-201.

[26] 雷一鸣, 杨逸冬, 谭嗣伟, 等. TNF-α通过内质网应激信号通路诱导肝癌细胞自噬并促进增殖的研究[J]. 新医学, 2017, 48(11): 770-774.

Lei Y M, Yang Y D, Tan S W, et al. TNF-α induces autophagy and promotes proliferation of liver cancer cells via ER stress signaling pathway[J]. J New Med, 2017, 48(11): 770-774.

[27] Wang J, He W, Tsai P J, et al. Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease[J]. Lipids Health Dis, 2020, 19(1): 72.

[28] Li T, Chen Y, Tan P, et al. Dihydroartemisinin alleviates steatosis and inflammation in nonalcoholic steatohepatitis by decreasing endoplasmic reticulum stress and oxidative stress[J]. Bioorg Chem, 2022, 122: 105737.

[29] Kopp M C, Larburu N, Durairaj V, et al. UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor[J]. Nat Struct Mol Biol, 2019, 26(11): 1053-1062.

(收稿日期:2023-09-25)

(本文编辑:杨江瑜)