王永惠

北京国际电气工程有限责任公司,北京 100041

电厂电气设备检修技术的若干研究

王永惠

北京国际电气工程有限责任公司,北京 100041

近年来,由于各级政府对电力建设加大投入,大容量机组、新能源板块等日趋壮大,电力市场已逐渐呈现出供大于求的趋势,各发电企业之间竞争愈演愈烈。为了促进机组的安全性、经济性,确保长周期运行并降低发电成本,各企业在设备检修上大做文章,新的检修理念和检修技术应运而生。本文对电厂中电气设备的检修技术进行了详细的分析。

电厂;电气设备;检修技术

随着社会的不断发展,国民经济对电力的依赖程度愈加突出。为了能够充分满足我国经济发展对电力的需求,电厂必然要对电气设备进行有效的检修,认真查看电气设备中是否存在故障隐患,一旦发现要及时采取相应的措施,进而确保电厂电气设备在良好的环境下运行,保证电厂的供电量。本文对电厂电气设备的检修技术进行了针对性的分析,希望对设备的安全有效运行有所帮助。

1 电厂电气设备检修的作用

近年来,发电领域一直处在快速发展的阶段。因为电厂输送的电压比较高,电流也比较大,而且对电气设备自身的质量以及在运行过程中的可靠性也有较高的要求,因此,电气设备的检修质量显得更加重要。对电厂中电气设备进行科学、合理的检修,既能确保电气设备的高效运行,又能减少重复检修、延长设备寿命。在电力行业不断发展和供电需求不断上升的基础上,电气设备也正在向着自动化、效率高的方向发展,为了保障电气设备能够在安全、可靠的环境下运行,提高电气设备的运行效率,一定要加强对电气设备的管理,对电气设备进行及时的检修,避免在使用过程中出现故障。

2 电厂电气设备检修技术的应用

2.1红外线热像仪技术在电厂变压器设备检修中的应用

如果变压器处在正常的运行状态下,其中的每个部件都会存在一定的热量,但是,如果长时间使用设备,就会出现负载失衡、接触点生锈、接触不良或者是电阻加强等情况,从而使系统和设备发生运行异常或者运行故障。如果由于这些部分出现故障,就会发出非常多的辐射,而且红外能也会特别强。而红外热像仪的测温原理为:红外热像仪中的物镜可以接受电力设备表面所出现的红外线辐射,通过光学系统进行聚集,将所有的红外能集中到系统的焦点上,也就是红外探测器的焦平面上。另外,通过探测器的光电改变,红外能可能会变成电能,再通过相应的处理就能获得探测电力设备的热图像,从而发现温度异常的地方,测量温度值。

例1:图1为胶州变电站主变压器 A相将军帽发热的实际情况,温度最高能够达到146.9℃。

图1

表1是对图1所作的分析报告中各检测点的温度值。

表1

例2:变压器在运行过程中因为内部出现异常情况(图2),油路的管道堵塞以及铁芯绝缘不良等出现发热的现象,而通过红外热像仪的使用,在检测变压器箱体时可以将变压器的箱体温度控制在正常的范围内,防止因为温度过高损坏变压器。

图2 变压器内的低油位引起变压器油过热

图3

例3:红外图像发现了一个发热的接点(图3),通过望远镜头测量后的温度为437℉。这个变电站是向附近的一所医院和周围居民供电。红外热像仪可以立即发现这个热异常。这种情况通常是由于接触不良造成的。

2.2超声波流量探测技术在电厂电气设备检修中的应用

在《防止电力生产重大事故的二十五项重点要求》中,第十一项对电厂发电机的运行提出了要求,要避免发电机损坏、机定、转子道路堵塞以及漏水等,因此,发电企业必须进行发电机定冷水系统流量测试工作。

所谓的超声波流量探测,就是在检测流体流动的情况下分析对超声脉冲产生的作用,进而进行流量体积的测量,通常情况下经常使用的测量方法有传播时间法、多普勒效应法。就电气设备而言,超声波流量探测技术主要适用发电机定子冷却水系统的检测,其原理是通过超声波回传技术,测量定冷水回路总的流量以及各分路的流量,通过计算机汇总分析,能准确分析出系统内部是否存在堵塞、泄漏,结合正常运行过程中发电机各部位的发热情况,确定发电机解体后的检修项目和策略。在电气设备正常运行的状态下,超声波流量探测技术也能对电气设备进行检测,相对于其他检修技术,超声波流量探测技术是一项功能特别强大的检修技术,既能快速找到电气设备存在的问题,而且还能提高检修的效率。但是在使用过程中,一定要根据电气设备的运行状态进行检测。同时要保证施工过程中要按照相关得出操作说明进行检测,防止发生不必要的损失。超声波流量探测技术虽然颇受欢迎,但其自身存在一定的缺陷,在实际运用中要根据实际经验进行辅助分析。

1)超声波流量探测的精度容易受温度变化、压力波动、介质特性、振动等影响,必须加以校正,或者通过多次测量取平均值的方法进行平衡。

2)测量时的操作方法对流量测量会产生较大影响,因为管径的不同,仪器与管壁的接触是否合适成为影响测量精度的主要因素,要求操作人员耐心细致,准确把握接触角度。

3)测量所得的数据要进行分析比较,排除测量误差后确定设备是否存在异常。支路的流通性是在各支路的流量和该端各支路流量平均值偏差基础上形成的,而计算偏差(K)的主要方法为:K=(Q支/Q平均—1)×100%。其中,Q支表示的之路流量值,单位为L/min,Q平均表示的汽、励端支路流量的平均值,单位为L/ min。之后根据JB/T 6228—2005《汽轮发电机绕组内部水系统检验方法及评定》中5.2超声波流量法测定子内冷水系统流量部分对其进行评定。

4)在进行发电厂水轮机进水量、汽轮机循环水量等一些大管径流量的测量时,使用便捷式超声波流量计要比以往的皮脱管流速计更加方便。对于超声波流量探测技术来说,目前存在的最大缺点就是超声波换能器和换能器与管道之间的耦合材料耐温程度会对可测流体的温度范围产生非常严重的影响,再有就是由于高温的影响,被测流体的数据会出现不准确、不完整的现象,因此,在我国只能用来对200℃以下的流体进行测量。除此之外,与普通的流量计相比,超声波流量计的测量线路要相对比较复杂,因为通常情况下工业计量的液体流速都在每秒几米左右,但是声波在液体中的流速却能达到1 600m/s左右,流速的变化导致声速也发生了相应的改变,因此,一定要创建有效的测量线路才能实现流体的测量。

2.3状态检修技术在电厂电气设备检修中的应用

所谓电气设备的状态检修技术,就是在电气设备状态和分析结果的基础上而进行的检修,这是一种比较系统的检修方式,和定期检修、故障点检修占据同样的位置。状态检修是由先进的电子设备和计算机辅助而完成的,通过状态监视技术和诊断技术来判断电气设备的状态信息,查看其是否存在异常现象,预测电气设备中出现的故障,在故障发生前对电气设备进行检修。状态检修和定期检修不同的是,状态检修是以电气设备目前的运行状况为依据,而不是以运行时间为依据,在这种情况下,利用先进的检测技术就能判断故障发生的位置以及故障对电气设备的影响程度,从而采取相应的措施对故障进行处理。比如,某个电厂中发电机已经使用了两年,所以说应该对其运行状态进行定期检修,但具体部位的检修规模必须依据状态监视技术以及诊断技术的综合分析加以确定,在整体定期检修的情况下对关键部位实施状态检修。状态检修不仅能够增加电气设备的使用时间,还能节约大量的检修成本,提高电气设备的使用效率和安全性,避免电气设备在运行过程中发生安全事故[1]。

另外,在电厂电气设备的状态检修中,最重要的就是计算机维修系统的创建,因此,在进行电气设备的状态检修之前,一定要创建好计算机维修系统,采用正确的电气设备状态检修方法和技术,进行状态检测和分析系统的确立,以计算机技术为基础进行电气设备状态的有效检修。通常情况下,电厂电气设备在进行状态检修时,一定要满足以下的条件;首先,按照具体的电气设备使用相应的检修方法;其次,对电气设备状态检修的数据进行有效的管理。

3 结论

综上所述,电厂电气设备能够正常运行直接影响着供电的质量,因此,一定要对电气设备进行科学的检修,避免电气设备的安全隐患发展为故障。采取有效的检修技术能够防止出现人力、物力以及财力等浪费,而且还能确保电气设备的使用效率,使电厂的发电工作在安全可靠的环境下进行。

[1]田新.电厂电气设备检修和故障处理[J].科技视界,2015(17):226,272.

TM6

A

1674-6708(2016)171-0249-02

王永惠,北京国际电气工程有限责任公司。