段冲+郑瑞

【摘要】 瘙痒-搔抓反应在日常生活上是一种保护性机制,但是多种皮肤性疾病,如特应性皮炎、湿疹、荨麻疹等常伴有慢性持续性瘙痒,明显损害了生活质量,已成为一个普遍且昂贵的医疗和社会经济问题。尽管瘙痒有重要的临床意义,但它的具体机制尚未明了。在过去的几十年中,在揭示瘙痒的具体机制上已经取得了实质性进展。本文主要是回顾了在外周致痒介质及相关受体的相互作用、调节痒感觉的信号通路,以及慢性应激在皮肤慢性瘙痒的发生和加重中的相关研究进展,希望能促进新的抗瘙痒治疗方法的发展。

【关键词】 瘙痒; 致痒介质; 瘙痒信号通路的敏感化; 慢性应激

Research Progress on the Mechanism of Cutaneous Pruritus/DUAN Chong,ZHENG Rui.//Medical Innovation of China,2017,14(11):136-140

【Abstract】 Itch-scratch reaction is a protective mechanism in daily life,but many skin diseases,such as atopic dermatitis,eczema,urticaria,often accompanied by chronic persistent itching,significantly impair quality of life,has become a popular and expensive medical and social problems.Although there are important clinical significance about itching,but its mechanism is still unclear.In the past few decades,substantial progress had been made in the specific mechanism of itch.This article is to review the interaction in peripheral itch mediators and related receptors,signaling pathways regulating itch,and chronic stress in the related research and the occurrence of chronic skin itching aggravated in progress,which hope promote the development of anti-itch new treatments.

【Key words】 Pruritus; Itch mediators; Sensitization of the itch signaling pathway; Chronic stress

First-authors address:Shanxi Medical University,Taiyuan 030001,China

doi:10.3969/j.issn.1674-4985.2017.11.037

瘙痒是一种引起皮肤抓挠欲望的不愉快感觉,可以分为急性和慢性两种形式。组胺通过感觉神经末梢上的组胺受体引发瘙痒被人们所熟知,且目前治疗瘙痒一线用药是抗组胺药物,但大多数炎症性皮肤病的瘙痒单一抗组胺治疗不能达到理想效果,所以近些年来产生了对除组胺依赖性途径以外其他的非组胺依赖性瘙痒途径的研究,其中许多致痒物质,如氯喹、白三烯B4、内皮素、白介素31等,都可以与相应受体结合介导非组胺依赖性瘙痒。本文就外周瘙痒介质及其受体、瘙痒信号通路敏感化和慢性应激等方面进展的研究,希望为瘙痒治疗提供更多的和更有效的治疗方法提供依据。

1 外周致痒介质及相关受体

引发瘙痒最重要因素是皮肤常驻细胞,如表皮角质形成细胞、肥大细胞、外周感觉神经纤维及T淋巴细胞等,它们可以释放多种介质,这些介质可以通过结合瘙痒受体直接引起痒或通过释放某些产物激活其他细胞释放致痒介质间接引起瘙痒。

1.1 神经生长因子和神经营养因子-4 神经生长因子和神经营养因子-4属于神经营养因子。特应性皮炎及银屑病患者皮损组织中神经生长因子水平明显升高,并与病情严重程度相关(但银屑病的病情与瘙痒程度并非正相关)。神经生长因子激活p75及TrkA受体可上调感觉神经肽,如P物质和降钙素基因相关肽的表达,可能致敏瞬时受体电位香草酸1通道(transient receptor potential vanilloid 1,TRPV1)和引起肥大细胞脱颗粒,从而导致瘙痒发生[1]。

1.2 内皮素1 内皮素1(Endothelin 1,ET-1)由皮肤中的肥大细胞、内皮细胞和角质形成细胞产生,是一种有效的致痒介质,在低浓度(10~100 pmol/site)就可以引发瘙痒,表明内皮素1是内生性的致痒介质。内皮素1是通过ETA受体的介导而激发瘙痒,不是通过TRPV1通道或瞬时受体电位锚蛋白1通道(transient receptor potential ankyrin 1,TRPA1)引发瘙痒。近期研究发现瞬时受体电位锚蛋白3通道(transient receptor potential ankyrin 3,TRPA3)可能参与了ET-1诱导性瘙痒的抑制[2-5]。

1.3 内源性大麻素 内源性大麻素(Endocannabinoids)属于花生四烯酸衍生物,大麻素(Cannabinoid,CB)受体分为CB1和CB2。在动物试验中发现,CB2受体激动后明显减少组胺诱发的搔抓行为[6]。

1.4 白三烯B4 白三烯B4(Leukotriene B4,LTB4)白三烯B4是被P物质和神经鞘氨醇磷酸胆碱(sphingosylphosphorylcholine,SPC)激发的下游致痒介质[7],白三烯B4被发现在特应性皮炎鼠模型的皮肤中增加[8]。向小鼠皮内注射白三烯B4可通过白三烯B4受体1(BLT1)受体的介导引发瘙痒[9-10]。白三烯B4已经被识别为一种潜在的瘙痒诱导性物质。

1.5 血栓素A2 血栓素A2(Thromboxane A2,TXA2)是氧化酶代谢产物,由角质形成细胞合成。向小鼠皮内注射血栓素A2类似物,可以通过在神经纤维和角质形成细胞中表达的血栓素受体引起瘙痒[11]。

1.6 组胺 组胺是最重要的致痒介质之一。组胺是在MC活化后脱颗粒释放到周围区域,通过神经纤维上H1受体诱发瘙痒。除了H1受体,组胺也能通过H3和H4受体调节瘙痒。最近的研究发现TRPV1通道能在组胺H4受体的下游信号通路中诱导背根神经节神经元应答,表明TRPV1通道可能参与了组胺H4受体介导的瘙痒发生[12]。小鼠模型表明H3受体似乎参与瘙痒抑制[13]。

1.7 前列腺素 前列腺素属类花生酸类物质,前列腺素D2在结膜瘙痒实验性模型中被证实为高致痒物质。高浓度的前列腺素E2也能激发瘙痒[14],Belghiti等[15]在胆汁淤积性瘙痒的小鼠模型中发现前列腺素E2表达明显升高,导致了TRPV1通道的敏感化并随后增强了瘙痒和疼痛。表明前列腺素E2通过作用于TRPV1通道增强了瘙痒。

1.8 蛋白酶 蛋白酶是一种引起非组胺依赖性瘙痒的重要物质。主要通过蛋白酶激活受体(Protease-activated receptors,PARs)引发瘙痒,蛋白酶激活受体是通过蛋白酶诱导的作为栓系配体的细胞外结构域的部分裂解来激活,已经在传入神经上被识别[16],主要是PAR2和PAR4两种受体。PAR2是由肥大细胞的胰蛋白酶及其他蛋白酶,如胰凝乳蛋白酶和胰激肽释放酶所激活,直接导致瘙痒。栓系配体(Tethered ligands),如SLIGRL(PAR2激动剂)和AYPGKF(PAR4激动剂)已知可以在小鼠中引发瘙痒,却不在大鼠中引发瘙痒[17]。最近发现SLIGRL引发瘙痒更多是通过Mas相关G蛋白偶联受体11(MrgprC11),而不是PAR2[18]。Reddy等[19]研究表明了组织蛋白酶S,可以通过裂解PAR2和PAR4,并激活MrgprC11引发瘙痒。最近研究表明在小鼠中,被AYPGKF-NH2(PAR4激活剂)激活的PAR4可以通过TRPV1/TRPA1依赖性机制引发瘙痒[20]。

1.9 5-羟色胺 5-羟色胺(5-hydroxy tryptamine,5-HT)5-羟色胺在痒感觉上的影响表现为“种属”依赖性。向大鼠皮内注射5-羟色胺仅引起搔抓行为,但在人类和小鼠会同时引起瘙痒和疼痛感受[21]。主要通过与5-羟色胺2受体结合活化初级感觉神经元内磷脂酶C,尤其是磷脂酶Cβ3,通过有丝分裂原激活蛋白激酶和蛋白激酶C的激活产生瘙痒[22]。

1.10 神经肽 瘙痒性疾病中最相关的肥大细胞活化剂是神经肽,如降钙素基因相关肽、P物质和内皮素-1等。神经肽来源于皮肤感觉神经,可以通过激活TRPV1通道来分泌。(1)降钙素基因相关肽(Calcitonin-gene related peptide,CGRP)由肽能躯体感觉神经元分泌,目前多认为其在瘙痒信号传递中起调节作用。McCoy等[23]将小鼠CGRPα+感觉神经元消融后,观察到组胺及氯喹诱导的搔抓行为较消融前减少(P<0.0005),提示其在瘙痒信号传递过程中起一定作用,但具体机制尚未明了。(2)P物质(Substance P,SP)是广泛分布于神经纤维内的一种神经肽。P物质可以在人类皮肤产生瘙痒,也能在小鼠模型产生搔抓行为。P物质能与肥大细胞膜上的NK-1受体结合,引起肥大细胞脱颗粒释放组胺及从而引起瘙痒。另一方面,肥大细胞激活后分泌炎症介质进一步加强P物质的分泌,使上述肥大细胞更加活跃[24]。P物质在小鼠可以通过直接作用于初级感觉神经元及角质形成细胞,引起一氧化氮和白三烯B4的释放引发瘙痒[25-26]。

1.11 Mrg受体 Mrg受体(Mas-related G-protein-coupled receptors,Mrgprs)包含50多个成员,其中 MrgprAs、MrgprB4-5、MrgprC11和MrgprD局限于小鼠的小直径的背根神经节神经元上,并参与了非组胺依赖性瘙痒[27]。氯喹、牛肾上腺髓质肽8-22(bovine adrenal medulla peptide 8-22,BAM8-22)及β丙氨酸分别通过 MrgprA3、MrgprC11和MrgprD在小鼠引发了痒相关的搔抓行为,而且在人类引发瘙痒[28-29]。脑啡肽原A(proenkephalin A)是BAM8–22前体,表达于成纤维细胞和角质形成细胞,发现在银屑病中是表达增加的[30]。

1.12 白介素31 白介素31(Interleukin-31,IL-31)已经表明在痒感诱导中起重要作用,是新发现的白介素6家族成员,IL-31主要由Th2淋巴细胞分泌,并通过IL-31受体α和制瘤素M受体直接激活酪氨酸激酶的JAK家族,导致转录因子STAT活化,以及磷脂酰肌醇3-激酶和有丝分裂原激活蛋白激酶的信号转导起作用。而且在儿童特应性皮炎的患者中,IL-31水平与疾病严重程度呈正相关。但是IL-31在引发瘙痒的确切作用仍不明确。IL-31参与了炎症性肺病和炎症性肠病[31-32],表明它在炎症免疫反应中的一般作用,可能间接引发瘙痒。

2 瘙痒信号通路的敏感化

中枢神经系统和外周神经系统的敏感化在慢性疼痛的发生中起了重要作用,慢性瘙痒平行于慢性疼痛[33],相同的过程可能会导致慢性瘙痒的发生。慢性瘙痒与自发性瘙痒、对正常痒刺激的增强的瘙痒反应和非伤害性触觉刺激引发的瘙痒反应相关,以下是可能导致慢性瘙痒的机制。

2.1 外周神经敏感化 瘙痒神经通路的外周神经系统敏感化归因于初级痒感觉神经元的兴奋性增高。很多内生性介质可以使初级感觉神经元敏感化[34]。神经生长因子是外周神经系统敏感化的潜在的炎症介质,在干性皮肤中升高,可能导致瘙痒受体(pruriceptors)的外周神经敏感化[35]。向人类皮内注射神经生长因子提高了被cowhage诱发的瘙痒,而非组胺诱导的瘙痒[36]。Akiyama等[37]研究表明了SLIGRL提高了背根神经节神经元对随后应用的氯喹和BAM8-22的反应性。说明PAR2在外周神经敏感化中可能起作用。

2.2 中枢神经敏感化 中枢神经敏感化是通过调节中枢神经系统的痒感受分子(itch-sensing molecules)的表达水平来实现的。中枢神经系统的痒感受神经元的超兴奋性增强了对瘙痒感受刺激的反应。由于疼痛和瘙痒的感觉极其相似,敏感化的机制可能相似。如Toll样受体3(Toll-like receptor3,TLR3)在痛觉中枢敏感化中被要求的,Liu等[38]研究表明TLR3敲除的实验性干性皮肤小鼠相比较野生型小鼠的搔抓行为显着下降,表明TLR3可能在脊髓瘙痒传导神经元的中枢神经敏感化中起作用。中枢神经敏感化也可以发生在脊髓背角Bhlhb5+抑制性中间神经元的去抑制的过程中[39]。非伤害性触觉刺激引发的瘙痒反应是痒神经通路敏感化的典型例子,它可能涉及外周和中枢神经敏感化[40]。非伤害性触觉刺激引发的瘙痒反应被认为是通过传入敏感化的瘙信号脊髓神经元的机械性感受器来介导的,但仍未被证实。

3 慢性应激与瘙痒

在慢性应激的情况下,异常的迷走神经阻滞导致了下丘脑-垂体-肾上腺轴的长期激活,从而引起促肾上腺皮质激素释放激素(corticotropin-releasing hormone,CRH)增加。CRH可以诱导许多外周致痒介质释放,它们大多数可以通过直接激活神经末梢上的瘙痒受体或者通过降低膜上的传导阈值及进一步激活肥大细胞释放致痒介质来调节神经纤维敏感性。慢性应激中副交感神经功能失调可以导致交感神经系持续性激活,可以引起神经生长因子的释放,神经生长因子可以通过促进参与瘙痒发病的受体的表达和敏感化,促进P物质的上调最终导致瘙痒阈值下降[41]。慢性应激能导致副交感神经系统功能失调,从而引起延脑头端腹内侧(rostral ventromedial medulla,RVM)的去抑制,最终导致下行瘙痒调节系统的易化,诱发瘙痒。Kim等[42]通过功能磁共振成像技术发现海马的活化参与了应激相关性瘙痒的发生,但具体机制尚不明确。

皮肤性瘙痒可以由外周致痒介质及相关受体的相互作用、瘙痒信号通路的敏感化来介导,且在慢性应激的情况下,可以通过交感和副交感神经的异常调节来影响瘙痒的发生和加重。目前主要包括组胺依赖性瘙痒途径和非组胺依赖性瘙痒途径。很多致痒机制目前尚不明了,有待进一步研究。瘙痒机制及通路的进一步研究有助于我们更好地治疗瘙痒,改善瘙痒性皮肤疾病患者的生活质量。

参考文献

[1] Kremer A E,Feramisco J,Reeh P W,et al.Receptors,cells and circuits involved in pruritus of systemic disorders[J].Biochimical Biophysica Acta(BBA) Molecilar Basis of Disease,2014,1842(7):869-892.

[2] McQueen D S,Noble M A H,Bond S M.Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice[J].Brtish Jornal of Pharmacology,2007,151(2):278-284.

[3] Gomes L,Hara D,Rae G.Endothelin-1 induces itch and pain in mouse cheek model[J].Life Sciences,2012,91(13-14):628-633.

[4] Andoh T,Tetsuro Y,Jung-Bum L,et al.Cathepsin E induces itch-related response through the production of endothelin-1 in mice[J].European Journal of Pharmacology,2012,686(1-3):16-21.

[5] Jiexian L,Qing J,Wenjin J.Role of transient receptor potential ankyrin subfamily member 1 in pruritus induced by endothelin-1[J].

Neurosci Lett,2011,492(3):175-178.

[6] lbrahim M M,Porreea F,Lai J,et al.CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids[J].Proceeding of the National Academy Science U S A,2005,102(8):3093-3098.

[7] Andoh T,Saito A,Kuraishi Y.Leukotriene B4 mediates sphingosylphosphorylcholine-induced itch-associated responses in mouse skin[J].Journal of Investigative Dermatology,2009,129(12):2854-2860.

[8] Andoh T,Haza S,Saito A,et al.Involvement of leukotriene B4 in spontaneous itch-related behaviour in NC mice with atopic dermatitis-like skin lesion[J].Exp Dermatol,2011,20(11):894-898.

[9] Andoh T,Kuraishi Y.Expression of BLt1 leukotriene B4 receptor on the dorsal root ganglion neurons in mice[J].Molecular Brain Research,2005,137(1-2):263-266.

[10] Andoh T,Kuraish Y.Intradermal leukotriene B4,but not prostaglandin E2,induces itch associated responses in mice[J].European Journal of Pharmacology,1998,353(1):93-96.

[11] Andoh T,Nishikawa Y,Yamaguchi-Miyamoto T,et al.

Thromboxane A2 induces itch-associated response through TP receptors in the skin in mice[J].Journal Invsetment of Dermatology,2007,127(8):2042-2047.

[12] Jian T,Yang N,Yang Y,et al.TRPV1 and PLC Participate in Histamine H4 Receptor-induced itch[J].Neural Plasticity,2016,2016(3):1-9.

[13] Sugimoto Y,Iba Y,Nakamura Y,et al.Pruritus-associated response mediated by cutaneous histamine H3 receptors[J].Clinical Experimental Allergy,2004,34(3):456-459.

[14] Metz M,Grundmann S,St?nder S.Pruritus:an overview of current concept[J].Veterinary Dermatology,2011,22(2):121-131.

[15] Belghiti M,Estevez-Herrera J,Gimenez-Garzo C,et al.

Potentiation of the transient receptor potential vanilloid 1 channel contributes to pruritogenesis in a rat model of liver disease[J].Journal of Biological Chemistry,2013,288(14):9675-9685.

[16] Steinhoff M,Neisius U,Ikoma A,et al.Proteinase-activated receptor-2 mediates itch:a novel pathway for pruritus in human skin[J].Journal of Neuroscience,2003,23(15):6176-6180.

[17] Klein A,Carstens M I,Carstens E.Facial injections of pruritogens or algogens elicit distinct behavior responses in rats and excite overlapping populations of primary sensory and trigeminal subnucleus caudalis neurons[J].Journal of Neurophysiology,2011,106(3):1078-1088.

[18] Liu Q,Weng H J,Patel K N,et al.The distinct roles of two GPCRs,MrgprC11 and PAR2,in itch and hyperalgesia[J].Science Signaling,2011,4(181):45.

[19] Reddy V,Elmariah S,Azimi E,et al.Mechanisms of itch:proteases activate Mas-related G-protein coupled receptors[J].

J Invest Dermatol,2013,133(S):41.

[20] Patricio E S,Costa R,Figueiredo C P.Mechanisms Underlying the scratching Behavior Induced by the Activation of Proteinase-Activated Receptor-4 in Mice[J].Journal of Investment Dermatology,2015,135(10):2484-2491.

[21] Schmelz M,Schmidt R,Weidner C,et al.Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens[J].Journal of Neurophysiology,2003,89(5):2441-2448.

[22] Bockaert J,Claeysen S,Becamel C,et al.Neuronal 5-HT metabotropic receptors:fine-tuning of their structure,signaling,and roles in synaptic modulation[J].Cell Tissue Research,2006,326(2):553-572.

[23] McCoy E S,Taylor-Blake B,Street S E,et al.Peptidergic CGRPα primary sensory neurons encode heat and itch and tonically suppress sensitivity to cold[J].Neuron,2013,78(1):138-151.

[24]黄林雪,李利.皮肤源性慢性瘙痒神经生理机制研究进展[J].中国中西医结合皮肤性病学杂志,2015,14(4):265-269.

[25] Andoh T,Kuraishi Y.Intradermal leukotriene B4,but not prostaglandin E2,induces itch-associated responses in mice[J].European Journal of Pharmacology,1998,353(1):93-96.

[26] Andoh T,Kuraishi Y.Nitric oxide enhances substance P-induced itch-associated responses in mice[J].Britain Journal of Pharmacology,2003,138(1):202-208.

[27] Dong X,Han S,Zylka M J,et al.A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons[J].Cell,2001,106(5):619-632.

[28] Liu Q,Tang Z,Surdenikova L,et al.Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus[J].Cell,2009,139(7):1353-1365.

[29] Liu Q,Sikand P,Ma C,et al.Mechanisms of itch evoked by β-alanine[J].Journal of Neuroscience,2012,32(42):14532-14537.

[30] Slominski A T,Zmijewski M A,Zbytek B,et al.Regulated proenkephalin expression in human skin and cultured skin cells[J].Journal of Investment Dermatology,2011,131(3):613-622.

[31] Cornelissen C,Luscher-Firzlaff J,Baron J M,et al.Signaling by IL-31 and functional consequences[J].European Journal of Cell Biology,2012,91(6-7):552-566.

[32] Raap U,Weissmantel S,Gehring M,et al.IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis[J].Pediatric Allergy Immunology,2012,23(3):285-288.

[33] Yosipovitch G,Carstens E,McGlone F.Chronic itch and chronic pain:analogous mechanisms[J].Pain,2007,131(1-2):4-7.

[34] Basbaum A I,Bautista D M,Scherrer G,et al.Cellular and molecular mechanisms of pain[J].Cell,2009,139(2):267-284.

[35] Tominaga M,Ozawa S,Tengara S,et al.Intraepidermal nerve fibers increase in dry skin of acetone-treated mice[J].Journal of Dermatology Science,2007,48(2):103-111.

[36] Rukwied R R,Main M,Weinkauf B,et al.NGF sensitizes nociceptors for cowhage- but not histamine-induced itch in human skin[J].Journal of Investigate Dermatology,2013,133(1):268-270.

[37] Akiyama T,Tominaga M,Davoodi A,et al.Cross-sensitization of histamine-independent itch in mouse primary sensory neurons[J].Neuroscience,2012,226:305-312.

[38] Liu T,Berta T,Xu Z Z,et al.TLR3 deficiency impairs spinal cord synaptic transmission,central sensitization,and pruritus in mice[J].Journal of Clinical Investigate,2012,122(6):2195-2207.

[39] Han L,Dong X.Itch Mechanisms and Circuits[J].Annual Review Biophysics,2014,43(1):331-355.

[40] Akiyama T,Carstens M I,Ikoma A,et al.Mouse model of touch-evoked itch (alloknesis)[J].Journal of Investigative Dermatology,2012,132(7):1886-1891.

[41] Kim H S,Yosipovitch G.An aberrant parasympathetic response:a new perspective linking chronic stress and itch[J].Experimental Dermatology,2013,22(4):239-244.

[42] Kim H J,Park J B,Lee J H,et al.How stress triggers itch:a preliminary study of the mechanism of stress-induced pruritus using fMRI[J].Internatinal Journal of Dermatology,2016,55(4):434-442.