徐小静,董瑞玲,魏立民,赵少猛,赵桂苹,张敏红,冯京海*

(1.中国农业科学院北京畜牧兽医研究所/畜禽营养与饲养全国重点实验室,北京 100193;2.海南省农业科学院三亚研究院(海南省实验动物研究中心),三亚 572025;3.海南省农业科学院畜牧兽医研究所,海口 571100;4.山西农业大学动物科学学院,太谷 030801)

采用数学公式拟合家禽在理想的、非限制环境下体重或体组分重的生长曲线,可以构建家禽潜在生长模型。潜在生长模型反映了该品种家禽的生长潜力,与环境、营养供给等因素无关,仅与该品种特有的遗传潜力有关,可以用于比较不同选育品系之间的差异,但是预测家禽的生长还需要考虑采食、营养、环境等限制性信息[1-4]。生长模型将家禽整个生长周期体重或体组分重的变化概括成几个参数,消除了随机性环境因素等引起的无规律变化,可以更客观的比较不同品种、品系之间生长的差异[5]。Knížetov等[5]利用Richards模型比较了9个肉鸡品系之间的差异,发现不同品系之间的成熟体重和成熟速度存在较大的差异。Sakomura等[6]对比了科宝和Ross肉鸡不同部位生长的规律,发现2个品种之间没有显着差异。其他研究也进一步比较不同白羽肉鸡品系[1,7-14]、不同慢速生长肉鸡[15-21]品种之间生长曲线的差异。另外,利用生长模型可以预测不同日龄家禽的体重、胸肌重、腿肌重的变化,根据家禽各部位产品市场价格的变化,合理安排出栏时间,保证家禽养殖效益的最大化[5]。近些年研究人员利用析因法研究了家禽能量或氨基酸的维持需要量和生长需要量,建立了预测家禽能量[22-24]或氨基酸需要量[25-28]的动态模型。这些模型可以根据家禽体重或体组分的生长,动态预测不同日龄家禽能量和氨基酸的需要量。这些模型的应用需要以家禽的生长模型为基础。

由上述研究可以看出,生长模型可以用于比较家禽不同品系间生长性能的差异,评价选育效果;可以预测家禽的体重和体组分重的生长,配合能量和氨基酸预测模型,动态预测家禽每日的营养需要量,同时在家禽生产决策中也发挥重要作用。目前有关家禽生长模型的研究主要集中在快大型白羽肉鸡[29]。与西方国家不同,我国黄羽肉鸡的饲养量非常大。2020年我国黄羽肉鸡的出栏量接近40亿只,约占肉鸡总出栏量的一半[30]。黄羽肉鸡的品种众多,不同品种之间生长速度和出栏时间差异很大。Zhao等[17]比较了3个黄羽肉鸡品种的生长模型,发现3个品种黄鸡的成熟体重为2 423~2 968 g。杨鹏[31]建立了黄麻鸡的生长模型,发现黄麻鸡的成熟体重达到了4 379 g。上述研究仅建立了黄羽肉鸡体重的生长模型,有关体组分重的生长模型研究较少。文昌鸡是海南地区的特色家禽品种,2020年被列入《国家级畜禽遗传资源保护名录》[32]。2019年文昌鸡的出栏量达到9 959万只,占海南省家禽出栏量的53%以上[33]。目前文昌鸡体重和体组分重的生长模型尚未研究。由于消费习惯的原因,文昌鸡的养殖以母鸡为主。因此本试验的目的是测定文昌鸡母鸡不同日龄体重和体组分的变化,建立文昌鸡的生长模型,为文昌鸡的高效养殖提供可靠的数据支撑。

1 材料与方法

1.1 试验动物及试验设计

采用完全随机试验设计,选择体重接近(27.98±0.12)g的1日龄健康文昌鸡母雏300只(由海南潭牛文昌鸡股份有限公司提供),随机分为6个重复,每个重复50只鸡,饲养于海南省农业科学院畜牧兽医研究所澄迈县试验基地。

1.2 试验日粮与管理

参照《黄羽肉鸡营养需要量》(NY3645—2020)[34]和潭牛文昌鸡股份有限公司现用营养标准配制玉米-豆粕型基础日粮。基础日粮的原料组成及营养水平见表1。试验鸡自由采食和饮水,按照海南潭牛文昌鸡股份有限公司的养殖规范进行免疫及日常管理,饲养至119日龄屠宰。

表1 试验日粮组成及营养含量Table 1 Composition and nutrient levels of the basal diet (as-fed basis) %

1.3 样品采集及测定指标

每周以重复为单位测定文昌鸡的体重,称重后每个重复选择2只接近平均体重的试验鸡,CO2致死,参考李龙[24]的方法分离、加工文昌鸡羽毛和胴体样品,测定羽毛和胴体的重量,参照GB/T 6432-1994和GB/T 6433-2006的方法测定胴体和羽毛中蛋白和脂肪的含量,计算胴体和羽毛中蛋白和脂肪重量,两者之和为文昌鸡的体蛋白和体脂肪。

1.4 文昌鸡生长模型公式的筛选与建立

根据拟合度选择最优的模型公式,构建文昌鸡体重、羽毛重、胴体重以及蛋白、脂肪和水分等组分的生长模型。4种模型公式为:

Gompertz模型:Yt=β0×e-β1×e-β2t

Von Bertalanffy模型:Yt=β0×(1-β1×e(-β2×t))3

Logistic模型:Yt=β0×(1+β1×e(-β2×t))-1

Richards模型:Yt=β0×(1+β1×e(-β2t))β3

其中Yt是指某指标(如体重、体蛋白重等)在t日龄时的重量,β0为该指标的最大成熟重,β1为有关曲线形状的生物常数,β2为相对成熟速度,β3为描述曲线形状的参数[31]。根据这3个参数可以计算出该指标达到最大生长速度时的日龄(拐点日龄,AIP)、达到最大生长速度时的体重(拐点体重,WIP)和最大生长速度(拐点最大增重,MWG),每种模型的计算公式不同,以Gompertz模型为例:AIP=(In β1)/β2;WIP=β0/e;MWG=β2×WIP。根据建立的模型公式,通过微积分还可以得到该指标日增重的预测模型。

1.5 数据统计和分析

使用 SPSS 26.0 统计软件中单因素方差分析,分析不同周龄文昌鸡体重和体组成重量的差异显着性。方差分析显着进行Duncan多重比较,P<0.05为显着标准。使用GraphPad Prism 8软件绘图。

2 结 果

2.1 不同周龄文昌鸡母鸡体重及体组分重的变化

由表2可以看出,随周龄增加,文昌鸡的体重和胴体重显着升高,17周龄达到最大值(P<0.001);羽毛重在前期快速增加,12周龄达到峰值(P<0.001)。羽毛占体重的比例较低,1周龄占体重的3.4%,随后逐渐增加,7~8周龄达到7.5%,而后逐渐降低,16~17周龄时羽毛仅占体重的5.0%。随周龄增加,文昌鸡的体脂肪重和体蛋白重显着升高,17周龄达到最大值(P<0.001);前期体脂肪重低于体蛋白质,12周龄时两者接近,而后体脂肪重高于体蛋白质。随周龄增加,体脂肪占体重的比例逐渐升高,1周龄时仅为7.7%,17周龄时增加到27.8%;而体蛋白占体重的比例较为恒定,基本在18.6%~22.9%之间变动。

表2 不同周龄文昌鸡母鸡体重和体组分重的变化Table 2 Changes in body weight and body composition weight of Wenchang hens at different ages

2.2 文昌鸡母鸡生长模型公式的筛选

分别采用Gompertz、Von Bertalanffy、Logistic和Richards四种非线性函数公式拟合文昌鸡体重、体蛋白和体脂肪的生长曲线,根据回归模型的决定系数(R2)、均方误差(MSE)、赤池信息准则(AIC)和残差平方和(SSR),评价4种函数公式的拟合度(表3)。结果发现,Gompertz模型拟合文昌鸡体重、体蛋白重和体脂肪重生长曲线的R2均高于其他3种模型公式,AIC和SSR均低于其他3种模型公式,表明Gompertz模型的拟合度最高,适用于拟合文昌鸡体重和体组分重的生长曲线。

表3 不同模型公式拟合度的比较Table 3 Comparison of fitting degree of different model formulas

2.3 文昌鸡母鸡活体、胴体和羽毛生长的Gompertz模型

随日龄增加,文昌鸡的体重、胴体重和羽毛重均呈“S”型变化(图1)。采用Gompertz模型拟合文昌鸡体重、胴体重和羽毛重的生长曲线,模型参数见表4。由表4可以看出,文昌鸡体重和胴体重的生长模型参数接近,与羽毛生长模型参数相比差异很大。羽毛的相对成熟速度较高,拐点日龄较早,成熟重和最大生长速度远低于体重和胴体重。体重和胴体重Gompertz模型的拟合度很高,R2超过0.999,羽毛的拟合度较低,仅有0.986。根据文昌鸡体重的Gompertz模型,通过微积分可以得到日增重(ADG)的预测模型:

图1 不同日龄文昌鸡体重、胴体重(a)和羽毛重(b)的变化规律Fig.1 Changes of body weight, carcass weight (a) and feather weight (b) of Wenchang chicken at different ages

表4 文昌鸡母鸡体重、胴体重和羽毛重生长的Gompertz模型参数Table 4 Gompertz model parameters for body weight, carcass weight and feather weight growth of Wenchang hens

ADG/(g·d-1)=218.84×e-3.96×e-0.023 2t-0.023 2t

(1)

2.4 文昌鸡母鸡体组分生长的Gompertz模型

文昌鸡的体水分、体蛋白和体脂肪的生长曲线见图2。采用Gompertz模型对体组分数据进行拟合,模型参数见表5。文昌鸡体蛋白的成熟重为696.8 g,低于体脂肪的成熟重1 037 g;体蛋白和体脂肪的相对成熟速度接近,分别为0.017 4和0.017 8;体蛋白的拐点日龄早于体脂肪(78.8 dvs.98.8 d);最大生长速度低于体脂肪(4.46 g·d-1vs.6.79 g·d-1)。根据体蛋白和体脂肪的Gompertz模型,通过微积分可以得到体蛋白和体脂肪日增重的预测模型(公式2和3)。体蛋白中主要为胴体蛋白,胴体蛋白的成熟重为729 g,而羽毛蛋白的成熟重只有77.8 g;羽毛蛋白的成熟速度大于胴体蛋白,达到最快生长的时间也早于胴体蛋白。

图2 不同日龄文昌鸡体成分(体水分、体脂肪、体蛋白)的变化规律Fig.2 Changes of body composition (body water, body fat, body protein) of Wenchang chickens at different ages

表5 文昌鸡母鸡体组分生长的Gompertz模型参数Table 5 Gompertz model parameters for body component growth of Wenchang hens

APG/(g·d-1)=47.77×e-3.94×e-0.017 4t-0.017 4t

(2)

AFG/(g·d-1)=107.25×e-5.81×e-0.017 8t-0.017 8t

(3)

其中APG和AFG分别为t日龄文昌鸡的体蛋白日增重和体脂肪日增重,单位为g·d-1。

3 讨 论

3.1 文昌鸡母鸡生长模型公式的筛选

研究人员提出了多种函数公式用于拟合家禽的生长曲线[35],其中Gompertz、Von Bertalanffy、Logistic和Richards四种非线性函数公式的参数简单,且具有生物学意义,因此常用于拟合家禽的生长曲线[29]。前3种模型属于具有固定拐点的三参数模型,而Richards模型属于具有柔性拐点的四参数模型[36]。Darmani等[37]认为,固定拐点的模型具有一定的局限性,根据残差平方和判断,具有柔性拐点的Richards模型比Gompertz模型更适用于拟合家禽的生长曲线。Rizzi等[15]和Zuidhof[38]也发现,Richards模型更加适用于描述本地肉鸡或肉鸡胴体部分的生长。Aggrey[39]在拟合肉鸡生长曲线时发现,Richards模型的形状参数β3接近1,因此跟Gompertz模型的参数非常接近,相较而言,Gompertz模型的拟合度更高。Masoudi[40]在构建Ross肉鸡的生长模型时也发现,Gompertz模型在上述4种模型中的拟合度最高。Zhao等[17]和李龙[24]拟合黄羽肉鸡的生长曲线,发现Gompertz模型的拟合度最高。France等[41]认为,Richards模型有时拟合度不好,可能是由于在优化过程中无法收敛或收敛较差导致的。本研究根据模型的R2、MSE、AIC和SSR,发现Gompertz模型对文昌鸡体重、体蛋白和体脂肪生长曲线的拟合度最高。在家禽生长模型研究中,Gompertz模型的使用最为广泛[29],因此本研究采用Gompertz模型拟合文昌鸡体重和体组分的生长曲线。

3.2 文昌鸡母鸡体重、胴体重和羽毛重的生长模型

本研究建立了文昌鸡体重的Gompertz模型,决定系数高达0.999 3。利用该模型及微积分模型(公式1),可以预测文昌鸡不同日龄体重和日增重的变化,这是预测文昌鸡能量需要量的基础。根据Gompertz模型,文昌鸡的成熟体重为2 382 g,远低于现代白羽肉鸡的成熟重[1,8,16,22,42]。白羽肉鸡体重的相对成熟速度一般在0.03~0.04[8,16,22,42],而文昌鸡体重的成熟速度仅有0.023,这就导致文昌鸡的拐点日龄(59.3)相对较晚。Zhao等[17]比较了3个黄羽肉鸡品种的生长模型,发现黄鸡的相对成熟速度在0.017~0.023之间,拐点日龄在51.7~62.7日龄之间。清远麻鸡母鸡的成熟体重为1 780 g,拐点日龄在52.1日龄[24],相比较而言,文昌鸡的成熟重大,拐点时间较晚,最快生长速度高于清远麻鸡(20.33 g·d-1vs.17.03 g·d-1)。

文昌鸡羽毛的成熟重为102 g,Xie等[43]测定清远鸡的羽毛成熟重为116 g,远低于白羽肉鸡羽毛的成熟重[1,8,22],这主要是由于文昌鸡和清远鸡的体型较小,其成熟体重远低于白羽肉鸡。文昌鸡羽毛成熟重约占活体成熟重的4.3%,白羽肉鸡羽毛的成熟重一般是成熟体重的3.7%~4.9%[1,22],但也有研究发现这个数值在5.4%~7.4%之间[8]。文昌鸡羽毛的相对成熟速度达到0.052,高于胴体和活体的成熟速度,导致羽毛的拐点日龄早于胴体和活体。白羽肉鸡也存在相同的趋势[1,8,22]。文昌鸡羽毛和胴体成熟重之和为2 468.8 g,略高于体重的成熟重2 382 g,这主要由于3个模型公式的R2并没有无限接近1所致。

3.3 文昌鸡母鸡体组分生长的Gompertz模型

本研究建立了文昌鸡体蛋白和体脂肪的Gompertz模型,决定系数达到0.99。利用该模型及微积分模型(公式2~3)可以预测文昌鸡不同日龄体蛋白和体脂肪的重量及体蛋白和体脂肪的日增重,同样可以用于预测文昌鸡每日能量的需要量。文昌鸡母鸡脂肪成熟重远高于蛋白,这与白羽肉鸡母鸡的结果一致,而白羽肉鸡公鸡的脂肪成熟重接近或低于蛋白重[1,8,22],这主要是由于母鸡在接近性成熟时脂肪合成能力增强。文昌鸡体脂肪和体蛋白的成熟速度非常接近,但由于体脂肪的成熟重远大于体蛋白的成熟重,导致体脂肪的拐点日龄晚于体蛋白(98.8 dvs.78.8 d)。

本研究建立了文昌鸡羽毛蛋白和胴体蛋白的Gompertz模型,决定系数接近0.99。羽毛蛋白氨基酸的组成与胴体蛋白的差别很大,其中赖氨酸的含量很低而胱氨酸的含量很高[8,44-46]。因此在计算氨基酸需要量时,需要分别考虑羽毛蛋白和胴体蛋白的生长需要[46]。利用上述模型的微积分公式,可以预测文昌鸡不同日龄羽毛蛋白和胴体蛋白的日增重。羽毛中蛋白含量很高,Emmans[46]推测家禽羽毛蛋白成熟重与胴体蛋白成熟重2/3次方的比值相对固定,并将这个比值称为羽毛系数。Gous等[1]测定了2个白羽肉鸡品系,发现羽毛系数在2.43~2.50之间,与Emmans[46]测定的火鸡羽毛系数非常接近。但文昌鸡的羽毛系数仅为0.96,与上述研究结果相差很大,表明不同品种之间羽毛系数并不是固定的,不能使用羽毛系数估测羽毛蛋白的成熟重。羽毛蛋白的成熟速率高于胴体蛋白,在白羽肉鸡和火鸡上同样发现这一趋势[1,8,46]。

4 结 论

本研究分别采用Gompertz、Von Bertalanffy、Logistic和Richards四种非线性函数公式拟合文昌鸡母鸡体重、体蛋白和体脂肪的生长曲线,发现Gompertz模型的拟合度最高。采用Gompertz函数公式建立了文昌鸡母鸡体重和体组分重的生长模型,这些模型及其微积分公式有助于文昌鸡的遗传选育和生产决策,同时也为今后预测文昌鸡母鸡每日能量和氨基酸需要量提供基础。