许莹

辽宁省沈阳市中国医科大学盛京医院第一神经内科病房,沈阳110000

肿瘤微环境中的树突状细胞

许莹

辽宁省沈阳市中国医科大学盛京医院第一神经内科病房,沈阳110000

树突状细胞(dendritic cell,DC)是目前所知的机体内功能最强大的抗原呈递细胞(antigen presenting cell,APC),具有强大的抗原摄取和处理能力,很多学者认为,基于树突状细胞的肿瘤疫苗可能是人类彻底战胜肿瘤的希望。但是在病理条件下,DC的功能受到严重的抑制。肿瘤微环境中存在很多抑制性细胞因子可以作用于树突状细胞,导致其功能异常,从而使肿瘤细胞逃脱机体免疫系统的监视。

树突状细胞;肿瘤微环境;细胞因子

树突状细胞是机体内功能最强大的抗原呈递细胞[1],具有强大的抗原摄取和处理能力,能够向初始呈递肿瘤抗原,刺激抗原特异的细胞毒性T淋巴细胞增殖(CTL),利用固有免疫细胞(如NK细胞)的细胞毒活性,引发针对肿瘤细胞的特异性免疫应答[2]。研究者将DC负载肿瘤抗原,制成肿瘤疫苗,并过继回输至荷瘤宿主体内,这些DC能够诱导针对肿瘤的特异性免疫应答[3-5]。但是,从目前的临床试验结果来看,该疗法的治疗效率还不尽人意,还有诸多问题需要解决[5-6],尤其是肿瘤患者体内微环境的改善。研究表明,肿瘤微环境中存在很多与DC功能相关的细胞因子,它们表达的改变会影响DC的功能。本文就目前肿瘤微环境下DC的功能变化进行综述。

1 树突状细胞概述

DC是目前所知的机体内功能最强大的APC[1],它是由多种形态、表型和功能不完全相同的细胞组成的一个细胞体系。DC起源于骨髓CD34+造血干细胞。CD34+造血干细胞首先分化为不同的DC前体(precursor antigen presenting cell,pDC),然后离开骨髓,通过血液或淋巴液进入淋巴组织或非淋巴组织,并继续分化为未成熟DC(immature antigen presenting cell,imDC)。imDC不断识别、捕捉外界抗原,并被激活为成熟DC(mature antigen presenting cell,mDC),同时迁移到淋巴结。在淋巴结内,mDC可有效地诱导T细胞产生特异性免疫应答[7]。有研究表明:免疫耐受可由成熟的,处于静息状态的DC引起,而完全被激活的DC能引起免疫反应[2]。

2 肿瘤微环境下的树突状细胞

基于DC的肿瘤疫苗被人们应用于白血病[8]、前列腺癌[9]、胶质瘤[10]、肠癌[11]、肺癌[12]、胰腺癌[13]、卵巢癌[14]和肝癌[15]等肿瘤的临床试验治疗。很多学者认为,基于树突状细胞的肿瘤疫苗可能是人类彻底战胜肿瘤的希望。但是在病理条件下,DC的功能受到严重的抑制[16]。肿瘤细胞中含有许多能够被宿主免疫系统所识别的抗原,但是在许多肿瘤组织中肿瘤细胞并不被免疫系统识别,不能有效产生免疫应答,对于肿瘤治疗来说,DC是诱导和维持抗肿瘤免疫应答的关键因素。

2.1异常树突状细胞的分化和活化

由于肿瘤对免疫识别的逃逸导致荷瘤宿主中的DC不能充分刺激免疫系统。肿瘤DC缺陷的根源可能是髓系细胞的异常分化,而这种异常分化可以导致功能正常的成熟DC数量减少,imDC的数量增加。

2.1.1肿瘤宿主中的成熟DC有研究者发现早期乳腺癌患者的DC数量显着减少[17]。而乳腺癌患者只有髓系DC的数量显着减少,其祖细胞pDC的数量未受影响。肿瘤微环境对DC的功能具有显着的影响[18]。肿瘤患者体内功能正常的DC数量减少的结果说明:APC数量的减少导致免疫刺激的效率低下,引起肿瘤微环境下免疫应答功能受损。

2.1.2肿瘤宿主中的未成熟DC在肿瘤患者体内的DC具有未成熟DC的表型,研究发现,在肾细胞癌或前列腺癌组织中提取的DC极少被活化,异体刺激能力也下降[19],这些DC不表达或低表达共刺激分子CD86和CD80,来源于大肠癌组织的DC不仅很少刺激T细胞增殖,反而诱导T细胞免疫耐受[20]。

2.2肿瘤微环境中重要的细胞因子

血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)在体外抑制DC的分化和功能,这与mDC的数量减少和imDC数量增加有相关性[21]。VEGF是被首个发现对DC分化有抑制作用的肿瘤来源的影响因素。VEGF由许多肿瘤细胞分泌,对于肿瘤的血管形成起着至关重要的作用,并且VEGF是血管内皮生长因子超家族的一个成员[22],研究者发现肿瘤患者血清VEGF的表达水平与肿瘤进展呈正相关[23]。VEGF在癌症患者血浆中的浓度增加与其较差的预后密切相关,有研究发现,VEGF的表达水平与卵巢癌患者肿瘤组织和外周血中的DCs的数量呈负相关,并且卵巢癌患者血浆中VEGF的表达越高,其预后也越差[24]。

IL-10在体外抑制DC活化,在体内减少mDC的数量[25]。许多肿瘤细胞可以分泌和释放IL-10。经过其处理的DC可以诱导CD4+和CD8+T细胞通过细胞间的接触来抑制其他T细胞进行抗原特异性增殖;也能通过减少共刺激分子的表达将imDC转变成耐受原APC[26];IL-10也能阻断单核细胞向DC分化,使其分化为成熟的巨噬细胞[27]。另外,IL-10还能抑制来源于CD14+或CD34+祖细胞的DC[28]功能。

巨噬细胞集落刺激因子M-CSF和IL-6抑制DC分化成熟。M-CSF和IL-6涉及肿瘤细胞介导的DC分化调控,M-CSF和IL-6的特异抗体能够消除肾细胞癌条件培养基对DC分化的负面影响,使CD34+祖细胞分化为DC。骨髓瘤患者血清抑制DC的产生,IL-6特异抗体可中和这种抑制效果,IL-6在体内抑制DC的成熟[29]。

TGFβ1是TGFβ超家族的一个重要成员,具有复杂的生物学功能,是能够调控IL-12表达和机体免疫耐受的细胞因子。在肿瘤微环境中,它既能加速肿瘤生长,也能抑制肿瘤生长[30],当细胞暴露于TGFβ1时,可触发细胞产生许多不同的应答,包括抑制细胞生长、迁移、分化和凋亡[30]。肿瘤细胞表达的TGFβ1对DC具有复杂的影响,它可将浸润于肿瘤的DC束缚于肿瘤组织内,阻止其从肿瘤组织向引流淋巴结迁移[31],可见TGFβ1是肿瘤逃脱免疫攻击的一个关键性因素。TGFβ1能抑制正常角化细胞的生长和分化,同时,它又能刺激肿瘤细胞增殖,使肿瘤细胞比其他非转化细胞更具生长优势[32]。

3 树突状细胞异常分化通路

具有酪氨酸激酶活性和以信号转导和转录活化因子(signal transducer and activation transcription,STAT)为底物的非受体型蛋白酪氨酸激酶(janus kinase,JAK)家族,JAK家族是不同信号转导路径的关键环节,这些路径活跃于细胞存活、增殖、分化和凋亡等功能活动中。在大多数肿瘤中发现了STAT3的连续活化,肿瘤细胞STAT3的连续活化抑制肿瘤产生,如肿瘤坏死因子(tumour necrosis factor,TNF)、干扰素β(interferon-β,IFN-β)和CC趋化因子配体5(CC chemokines ligand 5,CCL5)等炎性介导因子,从而引起免疫抑制[33]。在体外,存在STAT3连续活化的肿瘤细胞条件培养基,可抑制DC的功能成熟。

核转录因子κB(nuclear factor-κB,NF-κB)的活化可以由来自于细胞表面多种不同的刺激所诱导,NF-κB对DC分化是必需的[34]。青藤碱、己酮可可碱均可通过NF-κB途径抑制单核细胞来源的DC分化[35]。STAT3和NF-κB间有可能存在一种直接联系,STAT3可以结合NF-κB的p65亚单位,并抑制NF-κB的活性[34]。

丝裂原活化蛋白激酶通路(mitogen activated protein kinase,MAPK)也是DC生存和成熟的重要参与者,它参与许多细胞因子的释放和免疫细胞功能[36]。与其他MAPK蛋白通路相比,p38MAPK对上游刺激起着重要作用,阻断p38MAPK通路会抑制DC成熟[37]。

综上所述,若肿瘤特异的免疫应答受到了抑制,最终将导致肿瘤逃脱免疫系统的控制。这些机制提示,改善肿瘤患者体内微环境因素的各种免疫抑制因素可能会改善肿瘤的治疗,也可能会有助于基于DC的肿瘤疫苗的临床应用。

[1]Steinman RM.Decisions about dendritic cells:past,present,and future[J].Annu Rev Immunol,2012,30(4):1-22.

[2]Tel J,Aarntzen EH,Baba T,et al.Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients[J].Cancer Res,2013,73(3):1063-1065.

[3]Steinman RM,Banchereau J.Taking dendritic cells into medicine[J].Nature,2007,449(9):419-426.

[4]Schreiber,RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.

[5]Palucka K,Banchereau J.Cancer immunotherapy via dendritic cells[J].Nat Rev Cancer,2012,12(4):265-277.

[6]Radford KJ,Tullett KM,Lahoud MH.Dendritic cells and cancer immunotherapy[J].Curr Opin Immunol,2014,7(27):26-32.

[7]Zanoni I,Granucci F,Foti M,et al.Self-tolerance,dendritic cell(DC)-mediated activation and tissue distribution of natural killer(NK)cells[J].Immunol Lett,2007,110(1):6-17.

[8]Lim JH,Park CJ,Kim MJ,et al.Generation of lymphocytes potentiated against leukemic lymphoblasts by stimulation using leukemic cell lysate-pulsed dendritic cells in patients with acute lymphoblastic leukemia and measurement of in vitro anti-leukemic cytotoxicity[J].Hematology,2012,17(1):15-22.

[9]Draube A,Klein-González N,Mattheus S,et al.Dendritic cell based tumour vaccination in prostate and renal cell cancer:a systematic review and meta-analysis[J].PLoS One 6,2011,6(4):e18801.

[10]Chang CN,Huang YC,Yang DM,et al.A phaseⅠ/Ⅱclinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumour vac-cine in patients with malignant glioma[J].J Clin Neurosci,2011,18(8):1048-1054.

[11]Sakakibara M,Kanto T,Hayakawa M,et al.Comprehensive immunological analyses of colorectal cancer patients in the phaseⅠ/Ⅱstudy of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide[J]. Cancer Immubol.Immunother,2011,60(11):1565-1575.

[12]Perroud MW Jr,Honma HN,Barbeiro AS,et al.Mature autologus dendritic cell vaccines in advanced non-small cell lung cancer:a phaseⅠpilot study[J].J Exp Clin Cancer Res,2011,30(1):65-72.

[13]Suso EM,Dueland S,Rasmussen AM,et al.hTERTmRNA dendritic cell vaccination:complete response ina pancreatic cancer patient associated with response against several hTERTepitopes[J].CancerImmunol.Immunother,2011,60(6):809-818.

[14]Chiriva-Internati M,Cobos E,Cannon MJ.Prospects and challenges for immunotherapy of ovarian cancer-what can we learn from the tumor microenviroment?[J].Int Rev Immunol,2011,30(2-3):67-70.

[15]Wirth TC.Spontaneous and therapeutic immune responses in hepatocellular carcinoma:implications for current and future immunotherapies[J].Expert Rev Gastroenterol Hepatol,2014,8(1):101-110.

[16]Rabinovich GA,Gabrilovich D,Sotomayor EM.Immunosupressive strategies that are mediated by tumor cells[J]. Annu Rev Immunol,2007,25(2):267-296.

[17]Ghirelli C,Reyal F,Jeanmougin M,et al.Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid pre-dendritic cells in aggressive disease subtypes[J].Cancer Res,2015,75(14):1-13.

[18]Katz T,Avivi I,Benyamini N.Dendritic cell cancer vaccines:from the bench to the bedside[J].Rambam Maimonides Med J,2014,5(4):e0024.

[19]Xi HB,Wang GX,Fu B,et al.Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer[J].Biol Pharm Bull,2015,38(6):827-835.

[20]CiavarraRP,HoltermanDA,BrownRR,etal.Prostatetumor microenvironment alters immune cells and prevents longterm survival orlhotopic mouse model following FLT3-ligand/CD40-ligandimmunotherapy[J].JImmunpther,2004,27(1):13-26.

[21]Lin A,Schildknecht A,Nguyen LT,et al.Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth[J].Immunol Lett,2010,127(2):77-84.

[22]Gabrilovich DI,Chen HL,Girgis KR,et al.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J].Nat Med,1996,2(10):1096-1103.

[23]Minura K,Kono K,Takahashi A,et al.Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J].Cancer Immunol Immunother,2007,56(6):761-770.

[24]Masoumi MS,Amini A,Morris DL,et al.Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer[J].Cancer Metastasis Rev,2012,31(1-2):143-162.

[25]Yang AS,Lattime EC.Tumor induced interleukin 10 suppressed the ability of splenic dendritic cells to stimulate CD4 and CD8 T cell responses[J].Cancer Res,2003,63(9):2150-2157.

[26]Steinbrink K,Graulich E,Kubsch S,et al.CD4+and CD8+anergic T cells induced by interfeukin-10 treated human dendritic cells display antigen specific suppressor activity[J].Blood,2002,99(7):2468-2476.

[27]Gardner JK,Mamotte CD,Patel P,et al.Mesothelioma tumor cells modulate dendritic cell lipid content,phenotype and function[J].PLoS One,2015,10(4):e0123563.

[28]Quan S,Kim HJ,Dukala D,et al.Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy[J]. J Immunol,2015,194(9):4175-4184.

[29]Campia I,Buondonno I,Castella B,et al.An autocrine cytokine/JAK/STAT-signaling induces kynurenine synthesis in multidrug resistant human cancercells[J].PLoS One,2015,10(5):e0126159.

[30]Sánchez-Capelo A.Dual role for TGF-β1 in apoptosis[J]. Cytokine&Growth Factors Reviews,2005,16(1):15-34.

[31]Weber F,Byrne SN,Le S,et al.Transforming growth factor-β1 immobilises dendritic cells within skin tumors and facilitate tumour escape from the immune system[J].Cancer Immunol Immunother,2005,54(9):898-906.

[32]Draghiciu O,Lubbers J,Nijman HW,et al.Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J].Oncoimmunology,2015,4(1):e954829.

[33]Francois G,Lionel A,Frank H,et al.Links between innate and cognate tumor immunityv[J].Current Opinion in Immunology,2007,19(2):224-231.

[34]Nishio H,Yaguchi T,Sugiyama J,et al.Immunosuppression through constitutively activated NF-κB signalling in human ovarian cancer and its reversal by an NF-κB inhibitor[J].Br J Cancer,2014,110(12):2965-2974.

[35]Zhao Y,Li J,Yu K,et al.Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B[J].Int Immunopharmacol,2007,7(5):637-645.

[36]Boisleve F,Kerdine-Romer S,Pallardy M.Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha[J].Toxicology,2005,206(2):233-44.

[37]Swafford D,Manicassamy S.Wnt signaling in dendritic cells:its role in regulation of immunity and tolerance[J]. Discov Med,2015,19(105):303-310.

R730.3

A

10.11877/j.issn.1672-1535.2016.14.02.07

2015-04-12)