任红阳,郑林峰,王自立,王红亮*

(1.中国农业大学资源与环境学院 国家农业绿色发展研究院 植物-土壤相互作用教育部重点实验室,北京 100193; 2.杭锦后旗农牧业综合保障中心,巴彦淖尔 015400)

我国畜禽养殖存栏量逐年上升,对优质饲草的需求也与日俱增,全株青贮玉米已经成为反刍动物养殖业中主要的饲草之一[1-2],其作为一种质优价廉的粗饲料被广泛应用。全株玉米由于含有丰富的糖类和纤维素等养分,更容易青贮成功,保存时间长,可作为春、冬季牛、羊的优质饲料来源,但其粗蛋白质(crude protein, CP)含量相对较低[3]。此外,我国尚有大量的农业或加工业副产物如秸秆、糟渣等非常规饲料资源正在低值化使用[4]。混合青贮能够促进不同原料的营养成分互补以及种间微生物互作以实现青贮饲料营养均衡与适口性提升,尤其能够解决副产物原料难以单独青贮或青贮饲料CP含量不高等问题,既缓解了我国饲草资源紧缺的压力,又减少了农业废弃物的环境污染[5]。目前,关于全株玉米与其它饲草或副产物混合青贮的研究较多,但不同混贮原料的组合以及混贮比例对青贮饲料发酵品质的影响效果并不一致[6-7]。因此,本文系统总结了全株青贮玉米与豆科牧草、禾本科牧草以及副产物的最佳混合比例及其对青贮饲料发酵品质的影响,为我国青贮饲料资源的开发和合理应用提供科学依据。

1 青贮饲料质量分级

表1总结了不同青贮饲料质量分级标准,质量等级大致分为3~5级,主要包括pH、氨态氮/总氮(ammonia nitrogen/total nitrogen, NH3-N/TN)、乳酸/总酸(lactic acid/total acid, LA/TA)、乙酸(acetic acid/total acid, AA/TA)、丁酸/总酸(butyric acid/total acid,BA/TA)等指标。pH直接反映全株玉米青贮过程中产生的总酸含量,是青贮饲料是否发酵良好的重要指标。NH3-N/TN的比值反映全株玉米青贮过程中氨基酸和蛋白质的分解程度,比值越小,说明全株玉米青贮中蛋白质分解越少,青贮品质越高,当NH3-N/TN≤10%时表明发酵过程良好[8]。LA是青贮饲料中含量最高、酸性最强的有机酸,也是pH快速下降、抑制微生物生命活动的主要因素,主要由同型乳酸菌发酵产生[9]。AA能够非常明显抑制有害微生物的生长繁殖,提高全株玉米的有氧稳定性[10]。BA是由梭菌等不良微生物将青贮饲料中的乳酸或原料中的糖分解产生,同时伴随着能量的损失和蛋白质的降解,生成的胺或氨使青贮饲料具有恶臭气味,其含量越高则青贮饲料品质越低;但是梭菌不耐酸,pH降至4.2以下即可被抑制[11-12]。当青贮饲料pH低于4.2时,乳酸菌自身的繁殖活动也受到抑制,同样也不能生长或繁殖,此时,各种微生物活动进入相对稳定的时期,形成了一个微生物平衡循环,进而达到青贮饲料的稳定储藏。

2 混贮对全株玉米蛋白质含量及发酵品质的影响

本文依据混贮原料所属类别,将国内外研究中常见的混贮原料划分为豆科作物、禾本科作物、副产物三类,全面综述了与全株玉米单贮相比,不同类型混贮原料对全株玉米的干物质(dry matter, DM)含量、CP、pH、NH3-N/TN、有机酸(organic acid, OA)等主要营养及发酵组分的影响。

2.1 与豆科作物混贮

我国饲料存在巨大缺口,尤其是蛋白饲料资源国内供应严重不足。2021年蛋白饲用原料(大豆等)累计进口9.9 ×107吨,其中大豆进口9.7×107吨,饲用大豆基本全部依赖进口。此外,我国优质牧草如苜蓿等也严重短缺,未来几年缺口至少120万吨[14]。全株玉米是一种常见的饲草作物,含有丰富的糖类和纤维素等养分,易于制作青贮饲料,但其CP含量较低。豆科作物如苜蓿、大豆和豌豆等CP含量普遍较高,一般在10%~23%[15-17],但是豆科牧草具有可溶性碳水化合物(water soluble carbohydrates, WSC)和DM含量低、缓冲能力高等特性,导致其单独青贮时的NH3-N/TN和BA含量均较高,易发生腐败[18-19]。将全株玉米与豆科作物二者混合青贮,既可解决豆科作物青贮难的问题,又可提高青贮饲料的营养价值,改善发酵品质(表2)[19-37],从而缓解我国优质牧草的进口压力。全株玉米与豆科作物混贮的CP含量与全株玉米单贮相比明显增加,但由于作物种类、混贮比例、混贮时间等因素导致其变化幅度较大(9.4%~135.6%)。研究显示,全株玉米与苜蓿混贮对CP含量有较大提升,但NH3-N/TN含量也相应升高[29],这表明混贮增加了蛋白质的降解量。然而,将全株玉米与大豆、秣食豆和扁豆等混贮,结果显示NH3-N/TN含量仅略微升高,甚至部分低于全株玉米单贮[15,28-29]。研究表明,混贮饲料中LA和AA含量与青贮原料的DM有关,当DM处于25%~35%之间最为适宜[38-39]。全株玉米与豆科作物混贮基本检测不到BA含量(表2),因为混贮增加了青贮原料的WSC,为乳酸菌发酵提供了充足底物,利于LA生成,促使pH快速下降,有效抑制了梭菌等腐败菌繁殖[25]。进一步分析可知,高比例苜蓿与全株玉米混贮LA产生较少,pH下降较慢,不能有效抑制有害微生物活性,进而导致CP损失增加[40],但是随着全株玉米比例的增加,混贮饲料LA含量增加,pH降低,品质也更好。通常来讲,在鲜物质基础上使用≥20%全株玉米与苜蓿混贮,总体发酵品质更好[20-22]。如表2所示,混贮饲料的pH在3.7~4.7之间,相比全株玉米单贮略有升高。因为豆科作物本身pH较高,全株玉米与豆科作物混合青贮pH≤4.7范围内也都是理想的[41]。研究显示,全株玉米与大豆以25/75比例混贮,pH(4.7)远高于我国优质青贮玉米的标准,但CP、DM以及LA含量更高,发酵质量整体表现更好[27]。总体来讲,全株玉米与豆科作物混贮能够实现养分的互补,增加青贮饲料的CP含量,同时增加LA和 AA含量,改善了青贮饲料的发酵品质。

表1 青贮玉米发酵指标分级标准比较Table 1 Comparison of different standard fermentation indicator classifications for silage corn

表2 全株玉米与豆科作物混贮对其发酵品质的影响

2.2 与禾本科作物混贮

禾本科作物是农区和半农牧区冬、春季青贮饲料和优质干草的主要来源,对畜牧业的发展有十分重要的作用,但是近年来面临着供需缺口和进口压力加大等问题。2015年,燕麦和高粱等产品总进口量达到2 158.6万吨,是2010年的8.8倍[42]。2021年,高粱等饲用谷物原料累计进口6.033 3×107吨,较上年增长84.2%[43]。高粱具有含糖量高、抗逆性强、可在缺乏水资源的地区种植等优势,但其淀粉含量偏低[44];燕麦具有丰富的CP和WSC,但其水分含量高导致单独青贮不易成功,传统的加工方式中常将燕麦制成青干草,在晾晒过程中易造成养分损失,如遇雨雪等特殊天气时更易造成严重损失和浪费[45]。而全株玉米具备生物产量高、纤维含量较低、淀粉及能值高等特点,且水分适中、自然附着乳酸菌较多,因此青贮较容易成功[46],但在实际生产中也面临生产成本高、需水量大、对自然条件要求较高等问题。所以全株玉米与禾本科作物混播、混贮,在一定程度上可以解决部分禾本科牧草单独青贮的缺陷,从而改善其青贮品质,但不同类型禾本科作物混贮对全株玉米发酵品质的影响却不尽相同(表3)。郭婷等[47]将不同品种的燕麦与全株玉米按不同比例混贮,结果发现品种对青贮饲料发酵品质影响较大;其中,白燕8号与玉米最优混合比例为3∶7,此时青贮饲料的pH(3.26)、NH3-N/TN和BA含量均较低,发酵品质最优。此外,有研究显示糯玉米与普通玉米相比,蛋白质、赖氨酸和色氨酸等含量较高[48];但因具有较高的水分和较低的WSC含量,导致青贮时缺乏供乳酸菌发酵的底物,容易青贮失败,而与普通玉米按3∶7的混贮提升了CP含量15.3%,NH3-N/TN降低15.5%,说明混贮有效抑制了蛋白质降解,提高了青贮品质[49]。柳茜等[50]研究发现,玉米与高粱按照1∶1和7∶3混贮青贮发酵品质均较好,但1∶1混贮会导致CP含量下降(高粱CP含量较低)。胡远彬等[51]研究显示,象草和全株玉米以2∶8比例混贮效果最佳,青贮饲料品质与全株玉米单贮接近;尽管混贮饲料CP含量与全株玉米单贮相比降低7.7%,但与象草单贮相比各指标含量均显着降低,其中pH降低5.9%、NH3-N/TN降低70.9%、BA和LA含量也分别降低50%和46%。综上所述,全株玉米与禾本科作物混贮能够弥补某些禾本科作物单贮的不足,但应注意选择适当的混贮比例及饲草品种以确保在弥补其他饲草单贮不足的同时保障较佳的青贮饲料品质。

2.3 与副产物混贮

我国每年大约产生7亿吨秸秆和5.8亿吨加工副产物,因不易加工处理、流通成本高、季节性强和地理范围局限性等问题导致副产物的合理利用率平均不到40%,随意丢弃腐烂变质或直接燃烧污染环境的约占60%,不仅造成了农民收入和企业效益大大降低,而且造成资源浪费和环境污染[53-55]。食品副产品如湿酒糟等含有较为丰富的蛋白质、维生素和氨基酸等营养物质,具有较高的饲喂价值,但因其水分含量较高,高温时易腐败,难以长期保存。农业副产物诸如花生秧、向日葵秸秆等大多加工制成干草、草粉等饲喂畜禽,若将其调制成青贮饲料能更好地保存养分,同时还能降低干草贮存过程中霉变的风险。全株玉米中丰富的糖类养分可以为微生物活动提供能量,能够促进副产物(如秸秆)中纤维素和蛋白质等养分的降解,在一定程度上改善粗饲料的营养品质[56]。因此,将副产物与全株玉米混贮制成青贮饲料,不但能够提高农副产品循环利用效率,降低饲料成本,也能使青贮饲料营养更加均衡、风味口感更加丰富。不同类型副产物混贮对全株玉米发酵品质的影响如表4所示。Mjoun等[56]将玉米与湿酒糟混贮,LA产量随着湿酒糟添加量的增加而降低,可能是混贮改变了发酵模式,导致乳酸发酵转变为乙酸的量增加,这与Moyo等[57]的研究发现一致。此外,湿酒糟与全株玉米混贮还可以解决湿酒糟冬季单贮结冰的问题[58]。蒋金娟等[59]将全株玉米和甘蔗梢以7∶3的比例混贮发现,NH3-N/TN降低11.9%、LA增加12.7%;但随着甘蔗梢比例增加,同型乳酸菌发酵逐渐转变为异型乳酸菌发酵,导致乳酸分解为乙酸,使得饲料中WSC含量下降。中药渣中含有大量的CP和微量元素等营养物质,且价格低廉,将其应用于全株玉米青贮中能够改善青贮饲料的营养品质或促进动物健康[60-61]。研究显示,单一及混合中药渣与全株玉米混贮均能提升青贮饲料发酵品质,但不同药渣的最佳添加比例和改善效果并不相同。例如,添加5%的党参药渣对青贮饲料品质改善效果较好;牛蒡药渣及川芎药渣的添加均能改善青贮品质,但牛蒡药渣对青贮品质的改善效果优于川芎药渣[62]。综上所述,青贮玉米与副产物混贮能够提高青贮成功率和资源化利用效率,但可能降低青贮饲料的营养品质。因此,在实际生产中要根据青贮原料特性(DM、pH等)选取适宜的混贮比例或青贮方式以最大程度提升青贮饲料品质。

表3 全株玉米与禾本科作物混贮对其发酵品质的影响Table 3 Effects of whole corn mixed ensiling with grasses on silage fermentation quality %

3 小结

青贮饲料是我国反刍动物生产重要的饲草资源,其青贮品质的高低直接关系到畜牧业的可持续发展。利用青贮玉米进行混贮能够充分发挥各青贮原料的优点,既解决了某些原料单独青贮饲料品质不佳的问题,又提高了非常规饲料资源的利用率,但在实际生产中需要根据原料的特性进行适宜混合比例的研究以确保不影响青贮饲料的品质。此外,青贮玉米与其他饲草混播混贮的方式制作青贮饲料操作简便、可行性高,且具有低成本和高营养价值的优点,可考虑推广应用,但需考虑品种、地区、收获期等种植模式的差异。

表4 全株玉米与副产物混贮对其发酵品质的影响