吴尧

摘 要:国民经济中机械制造占有极大的比例,而在机械加工中金属的切削又占有及其重要的地位,依靠精密的切削手段,机械加工才能更加的精准可靠。而切削用量的选择以及刀具的确定是数控编程的核心内容,其会直接对加工部件的质量造成影响,甚至能够决定车床是否能够发挥应有的功效,并影响生产的安全。因此应当合理的选择切削用量以及刀具,以保证编程加工中加工程序的质量。

关键词:铣削技术;刀具;切削用量

1 引言

机械制造是国民经济的支撑产业之一,而其依赖于精密的加工手段,即金属的切削。金属切削工艺在现代化的机械电子制造中发挥着无可替代的作用。从古至今,工具的制造以及设计都受到了人们的重视,而这里所提到的工具,不仅仅为机械制造中的机床,最重要的应当是直接参与加工切削所使用的刀具。刀具在金属加工中起到了基础性的推动作用,其技术发展对机械制造工艺的发展来说,基础而又关键,从某方面说,切削加工的发展以及变革就是刀具的发展以及变革。

某单位引入了两台车铣设备。但是没有真正的发挥出该设备在零件加工中的作用,另外在选择刀具以及加工的路径规划中,对切削用量的确定也没有到位,需要经人工进行输入,实现了半自动化。但是在加工中还是需要人机交互予以完成,没有实现数控加工。不过,同传统的加工相比较,需要变成人员掌握一定的切削用量原则,在进行变成的过程中需要对数控加工的相关特点予以充分考虑。在输入相关参数后,系统会生成NC程序,并传输到数控机床中,用以完成加工。只有掌握了车铣加工数控车床的铣削基本原则,才能掌握其加工功能,对于一些精度要求较高且形状复杂的回转体零件加工,该种零件要求的是精密加工,因此,对数控加工技术的提高是十分有必要的。

2 刀具种类

在数控铣加工中,所能应用到的刀具种类较多,设备在发展技术在进步的同时,刀具也在努力适应机床的要求,能够更好的适应高速、高效以及高自动化的方向发展,因此变得更加通用、标准,模块化的刀具已经成为了现代刀具发展的主要方向,而根据刀具的使用不同,可以分为两类,一种是孔加工刀具,另一种则是铣削刀具。从结构上可以将刀具进一步分为,整体式刀具、镶嵌式刀具、特殊型刀具等,其中镶嵌式刀具又能够分为机夹式刀具以及焊接式刀具,而特殊型刀具总又可分为减震式刀具以及复合式刀具。另外根据刀具的材料又能进一步进行分类:高速钢材料、硬质合金材料、金刚石材料以及其他材料等一系列刀具。而从切削工艺进行分类,刀具又能够分成圆角立铣刀、锥度铣刀以及球头刀和平端立铣刀。

3 刀具的选择

选择刀具需要通过人机交互予以完成,在编程控制中,根据机床的能力以及所需要加工工件的材料性能,进行选择,另外还需要结合工序、切削用量和其他综合性的因素,对刀柄以及刀具进行选择。选择需要注意的原则包括:需要刚性较好、耐用度较高、精度较为准确的刀具,用以方便安装调整。在加工要求可以满足的前提下,可以尽量缩短刀柄的长度,用以增加刚性。生产时,加工刀具的选择主要依据应当是所要生产的零件的形状。

3.1 选择铣削刀具

在曲面类工件的加工中,为了使得刀具同所要加工的零件的轮廓能够在切削处相切,则应当避免其二者之间出现干涉,一般都会采用球头刀,精加工的时候变选择四刃铣刀、粗加工则只需要选择两刃铣刀;在进行较大平面的铣加工时,为了增大加工表现的粗糙程度以及提高效率,一般都会采用盘形的镶嵌式刀具;通用铣刀可以被应用在台阶面的加工以及小平面的加工中;而键槽的加工则需要保证高精的尺寸,所以两刃的键槽铣刀是最佳的选择。

3.2 选择孔加工刀具

在数控机床的应用中,一般没有钻模,另外考虑到切削条件以及钻头的刚性,应当选择直径满足条件:钻孔深度同直径的比小于5.在钻孔前应当进行孔的中心定位,保证可以将孔定位到相当精确的位置;选用浮动绞刀进行精绞钱的加工,前孔应当倒角;而在切削镗孔的过程中应当选择对称的镗刀进行加工,用以平衡切削振动;刀杆应当尽可能选择短而粗的,用以降低切削振动的不利影响。在进行数控加工时,由于刀具的测量以及更换和刃磨都是由人工进行的,因此额外占用的时间较长,所以应当将刀具的使用顺序进行合理的安排。一般刀具的使用应当遵循以下原则:尽可能的将刀具使用的数量予以减少;安装刀具后,尽可能的发挥其在加工中的最大效果;即便是尺寸相同、规格相同的刀具在粗加工中也应当分开;先进行铣削加工后进行钻孔加工;精加工中应当先曲面加工后二维轮廓加工;尽可能使用数控机床自身的自动换刃功能,以对生产效率进行提高。刀具的精度以及耐用度会影响到刀具的价格,但是,使用好的刀具在加工过程中提高了效率以及零件的质量,由此所带来的利益完全可以覆盖刀具增加的成本,以此降低了生产的总成本。总之,在加工铣削工件中应当充分对工件的热处理状态、加工余量以及切削性能进行考量,对铣刀进行正确选择,在生产中发挥数控铣床最大的效率,从而获得令人满意的加工质量。

3.3 切削速度的确定

进给速度是数控机床切削用量中的重要参数,主要根据零件的加工精度和表面粗糙度要求以及刀具、工件的材料性质选取。最大进给速度受机床刚度和进给系统的性能限制。在轮廓加工中,在接近拐角处应适当降低进给量,以克服由于惯性或工艺系统变形在轮廓拐角处造成“超程”或“欠程”现象。确定进给速度的原则:首先当工件的质量要求能够得到保证时,为提高生产效率,可选择较高的进给速度。一般在100~200mm/min范围内选取。其次在切断、加工深孔或用高速钢刀具加工时,宜选择较低的进给速度,一般在20~50mm/min范围内选取。第三当加工精度,表面粗糙度要求高时,进给速度应选小些,一般在20~50mm/min范围内选取。最后刀具空行程时,特别是远距离“回零”时,可以选择该机床数控系统给定的最高进给速度。

3.4 确定背吃刀量

背吃刀量又被称作为侧吃刀量。在加工过程中应当在对工件表面质量予以保证的前提下,以最低的刚度要求使得侧吃刀量同工件加工余量相等,从本质上讲,侧吃刀量是由刀具刚度、工件以及机床的性质所决定。因此同加工余量想比较能够大大减少刀具走刀的次数,提高了效率。

4 结束语

在数控铣床的应用中,可以通过轴向动力头以及颈相动力头实现三坐标联动。通过圆柱插补以及极坐标插补等指令开发、优化程序,并有效补偿了机床加工过程中工位的重复,对回转体侧面精加工予以实现,提高了所需加工零件的表面质量以及整体精度。

参考文献

[1]范国清,刘国肇.高效精密平面铣削技术[J].组合机床与自动化加工技术,1983.

[2]王满元.平面铣削加工系统的动态研究[J].哈尔滨理工大学学报,1985.

[3]朱祖良.如何控制铣刀圆柱刃切削时的业度和光洁度[J].航空制造技术,1985.